Introduction to Probability, R, and Simulation

Jared S. Murray
STA-371H
McCombs School of Busines
The University of Texas at Austin

Introduction

Probability and statistics let us talk meaningfully about uncertain events.

- What will Amazon's revenue be next quarter?
- What will the return of my retirement portfolio be next year?
- How often will users click on a particular Facebook ad?

All of these involve inferring or predicting unknown quantities

Random Variables

- Random Variables are numbers that we are NOT sure about, but have sets of possible outcomes we can describe.
- Example: Suppose we are about to toss a coin twice. Let X denote the number of heads we observe.

Here X is the random variable that stands in for the number about which we are unsure.

Probability

Probability is a language designed to help us talk and think about random variables. To each event (one or more possible outcomes) we assign a number between 0 and 1 which reflects how likely that event is to occur. For such an immensely useful language, it has only a few basic rules.

1. If an event A is certain to occur, it has probability 1 , denoted $P(A)=1$.
2. $P(\sim A)=1-P(A)$. ($\sim A$ is "not- A " $)$
3. If two events A and B are mutually exclusive (both cannot occur simultaneously), then $P(A$ or $B)=P(A)+P(B)$.
4. $P(A$ and $B)=P(A) P(B$ given $A)=P(B) P(A$ given $B)$.

Probability

A little notation:

1. $P(A$ and $B)$ is called a joint probability (the probability both A and B happen), and we often just write $P(A, B)$.
2. $P(A$ given $B)$ is called a conditional probability - the probability that A happens, given that B definitely happens. We will write $P(A \mid B)$ for this conditional probability.

Probability Distribution

- We describe the behavior of random variables with a probability distribution, which assigns probabilities to events.
- Example: If X is the random variable denoting the number of heads in two independent coin tosses, we can describe its behavior through the following probability distribution:

$$
X=\left\{\begin{array}{lll}
0 & \text { with prob. } & 0.25 \\
1 & \text { with prob. } & 0.5 \\
2 & \text { with prob. } & 0.25
\end{array}\right.
$$

- X is called a discrete random variable as we are able to list all the possible outcomes
- Question: What is $\operatorname{Pr}(X=0)$? How about $\operatorname{Pr}(X \geq 1)$?

Probability Distributions via Simulation

- This is a simple example, so we can compute the relevant probability distribution
- What if we couldn't do the math? Could we still understand the distribution of X ?
- Yes - by simulation!

Quick intro to R

We can do more efficient simulations in R .
I'll show you some code today, but don't worry if it's hard to follow right now - we will get lots of practice.

R can be used as a calculator:
$1+3$
\#\# [1] 4
sqrt(5)
\#\# [1] 2.236068

Quick intro to R

We can save values for later, in specially named containers called variables
$\mathrm{x}=5$
print(x)
\#\# [1] 5
$x+2$
\#\# [1] 7

Quick intro to R

Variables can be numbers, vectors, matrices, text, and other special data types. We will only worry about a few of these.

```
y = "Hello"
print(y)
## [1] "Hello"
z = c(1, 3, 4, 7)
print(z)
## [1] 1 3 4 7
s = rep(1, 3)
print(s)
```


Probability Distributions via Simulation in R

R has extensive capabilities to generate random numbers. The sample function simulates discrete random variables, by default giving equal probability to each outcome:
sample(c(1, 4, 5), size=4, replace=TRUE)
\#\# [1] 1445

Probability Distributions via Simulation

Let's simulate flipping a fair coin twice:
sample(x $=c(0,1)$, size $=2$, replace $=$ TRUE)
\#\# [1] 0 1
And a few more times:

```
sample(x = c(0,1), size = 2, replace = TRUE)
```

\#\# [1] 1 1
sample(x = c(0,1), size $=2$, replace = TRUE)
\#\# [1] 10
sample $(x=c(0,1)$, size $=2$, replace $=$ TRUE $)$

Probability Distributions via Simulation

To approximate the probability distribution of X, we can repeat this process MANY times and count how often we see each outcome.

A "for loop" is our friend here:

```
num.sim = 10000
num.heads.sample = rep(x = NA, times = num.sim)
for (i in 1:num.sim) {
    coinflips.result = sample(x = c(0, 1),
        size = 2, replace = TRUE)
        num.heads.sample[i] = sum(coinflips.result)
}
```


Aside: Packages in R

One powerful reason to use R is the number of user contributed packages that extend its functionality.

We'll use the mosaic package in R to simplify some common tasks, like simple repeated simulation:
library(mosaic)
num.heads.sample $=$ do(num.sim) * \{
coinflips.result $=$ sample(x $=c(0,1)$, size $=2$, replace = TRUE)
sum (coinflips.result)
\}

Probability Distributions via Simulation

Results (first 10 samples):
head (num.heads.sample, 10)
\#\#
\#\#
\#
\#\# 2

Probability Distributions via Simulation

Results (summary):

table(num.heads.sample)
\#\# num.heads.sample
\#\# $0 \quad 1 \quad 2$
\#\# 251350152472
table(num.heads.sample)/num.sim
\#\# num.heads.sample

\#\#	0	1	2
\#\#	0.2513	0.5015	0.2472

What have we done here? We:

- Set up a model of the world (The coin is fair, so $P($ Heads $)=0.5$, and the tosses are independent)
- Understood the implications of that model through:

1. Mathematics (probability calculations)
2. Simulation

When we add the ability to incorporate learning about uncertain model parameters (statistics!) we have a powerful new toolbox for making inference, predictions, and decisions.

| President |
| :---: | :---: | :---: |
| Nov.8,2016 | | Senate |
| :---: |
| Nov.8,2016 |\quad| Analysis |
| :---: |
| Nov.9,2016 |

Who will win the presidency?

Chance of winning

Hillary Clinton

https://projects.fivethirtyeight.com/2016-election-forecast/

