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Introduction

Probability and statistics let us talk meaningfully about uncertain

events.

» What will Amazon's revenue be next quarter?
» What will the return of my retirement portfolio be next year?

» How often will users click on a particular Facebook ad?

All of these involve inferring or predicting unknown quantities



Random Variables

» Random Variables are numbers that we are NOT sure about,

but have sets of possible outcomes we can describe.
» Example: Suppose we are about to toss a coin twice.

Let X denote the number of heads we observe.

Here X is the random variable that stands in for the number

about which we are unsure.



Probability

Probability is a language designed to help us talk and think about
random variables. To each event (one or more possible outcomes)
we assign a number between 0 and 1 which reflects how likely that
event is to occur. For such an immensely useful language, it has

only a few basic rules.

1. If an event A is certain to occur, it has probability 1, denoted
P(A) =1.

2. P(~A)=1-P(A). (~Ais “not-A")

3. If two events A and B are mutually exclusive (both cannot
occur simultaneously), then P(A or B) = P(A) + P(B).

4. P(A and B) = P(A)P(B given A) = P(B)P(A given B).



Probability

A little notation:

1. P(A and B) is called a joint probability (the probability both
A and B happen), and we often just write P(A, B).

2. P(A given B) is called a conditional probability — the

probability that A happens, given that B definitely happens.
We will write P(A | B) for this conditional probability.



Probability Distribution

» We describe the behavior of random variables with a

probability distribution, which assigns probabilities to events.

» Example: If X is the random variable denoting the number of
heads in two independent coin tosses, we can describe its

behavior through the following probability distribution:

0 with prob. 0.25
X = 1 with prob. 0.5
2 with prob. 0.25

» X is called a discrete random variable as we are able to list all

the possible outcomes

» Question: What is Pr(X = 0)? How about Pr(X >1)?



Probability Distributions via Simulation

P> This is a simple example, so we can compute the relevant

probability distribution

» What if we couldn’'t do the math? Could we still understand
the distribution of X?

» Yes - by simulation!



Quick intro to R

We can do more efficient simulations in R.

I'll show you some code today, but don't worry if it's hard to follow

right now - we will get lots of practice.

R can be used as a calculator:
1+3

## [1] 4

sqrt (5)

## [1] 2.236068
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Quick intro to R

We can save values for later, in specially named containers called

variables

x =25
print(x)

## [1] 5
x+2

## [1] 7
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Quick intro to R

Variables can be numbers, vectors, matrices, text, and other

special data types. We will only worry about a few of these.

y = "Hello"
print (y)

## [1] "Hello"

z=c(l, 3, 4, 7)
print(z)

## [1] 1 34 7

s = rep(1, 3)
print(s)

## [1] 111
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Probability Distributions via Simulation in R

R has extensive capabilities to generate random numbers. The
sample function simulates discrete random variables, by default

giving equal probability to each outcome:
sample(c(1l, 4, 5), size=4, replace=TRUE)

## [1] 1 4 4 5
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Probability Distributions via Simulation

Let's simulate flipping a fair coin twice:
sample(x = c(0,1), size = 2, replace = TRUE)

## [1] 0 1

And a few more times:

sample(x = c(0,1), size = 2, replace = TRUE)
## [1] 1 1
sample(x = c(0,1), size = 2, replace = TRUE)
## [1] 1 0
sample(x = c(0,1), size = 2, replace = TRUE)

14



Probability Distributions via Simulation

To approximate the probability distribution of X, we can repeat
this process MANY times and count how often we see each
outcome.

A “for loop” is our friend here:

num.sim = 10000
num.heads.sample = rep(x = NA, times = num.sim)
for (i in 1:num.sim) {
coinflips.result = sample(x = c(0, 1),
size = 2, replace = TRUE)

num.heads.sample[i] = sum(coinflips.result)



Aside: Packages in R

One powerful reason to use R is the number of user contributed

packages that extend its functionality.

We'll use the mosaic package in R to simplify some common

tasks, like simple repeated simulation:

library(mosaic)
num.heads.sample = do(num.sim) * {

coinflips.result = sample(x = c(0, 1),

size = 2, replace = TRUE)

sum(coinflips.result)
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Probability Distributions via Simulation

Results (first 10 samples):

head (num.heads.sample, 10)

#i# result
##
##
##
##
##
##
##
##
##
#i#
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Probability Distributions via Simulation

Results (summary):

table (num.heads.sample)

## num.heads.sample
## 0 1 2
## 2513 5015 2472

table (num.heads.sample) /num.sim

## num.heads.sample
## 0 1 2
## 0.2513 0.5015 0.2472
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What have we done here? We:

» Set up a model of the world (The coin is fair, so
P(Heads) = 0.5, and the tosses are independent)
» Understood the implications of that model through:

1. Mathematics (probability calculations)
2. Simulation

When we add the ability to incorporate learning about uncertain
model parameters (statistics!) we have a powerful new toolbox for

making inference, predictions, and decisions.
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YFiveThirtyEight

2016 Election Forecast

President Senate Analysis
Nov. 8, 2016 Nov. 8, 2016 Nov. 9, 2016

Who will win the presidency?

Chance of winning

Hillary Clinton Donald Trump

71.4% 28.6%
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https://projects.fivethirtyeight.com/2016-election-forecast/
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