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(1) We have a null hypothesis, that the pre-game coin toss in the
Patriots’ games was truly random.

(2) We use a test statistic, number of Patriots’ coin-toss wins, to
measure the evidence against the null hypothesis.

(3) There is a way of calculating the probability distribution of the
test statistic, assuming that the null hypothesis is true. Here,
we just ran a Monte Carlo simulation of coin flips, assuming
an unbiased coin.

(4) Finally, we used this probability distribution to assess whether
the null hypothesis looked believable in light of the data.

All hypothesis testing problems have these same four elements.
Usually the difficult part is Step 3: calculating the probability
distribution of the test statistic, assuming that the null hypothesis
is true. The essence of the problem is that, in most cases, we can’t
just run a simple simulation of coin flips. Luckily, there is a very
general way of proceeding here, called the permutation test, which
we will now learn about.

Permutation tests

Is gun violence correlated with gun policy?

Gun policy is an important and emotionally charged topic in
21st-century America, where gun violence occurs with far higher
frequency than it does in other rich countries. Many people feel
strongly that certain types of guns, like military-style assault
weapons, should be banned, and that all gun purchases should
be subject to stronger background checks. Others view gun own-
ership as both an important part of their cultural heritage and a
basic right protected by the U.S. Constitution. Like with many
issues, there seems to be little prospect of a national consensus.

Both gun laws, and the likelihood of dying violently as a re-
sult of gun crime, vary significantly from state to state. Figure 7.2
shows some of this variation in a chloropleth map, where discrete
areas on the map are shaded according to the value of some nu-
merical variable. Notice that the states are shown as a gridded
tile of equal-sized hexagons, rather than as an actual map of the
United States. This is common technique used to avoid the visual
imbalances due to large differences in the states’ total area.
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Murder rates and gun laws in the US, 2010

Figure 7.2: Left panel: a chloropleth
map of murder rates versus gun laws
across the U.S. states. The shaded color
shows the state’s gun-murder rate;
blue is lower, and red is higher. The
outline indicates whether a state’s gun-
control laws received a passing or a
failing grade from the Law Center to
Prevent Gun Violence (black for pass-
ing, grey for failing). The right panel
shows a dot plot of the gun-murder
rates across the two groups, together
with the median for each group in
blue. Washington (D.C.), at 16.2 gun
murders per 100,000 people, is far off
the top of the plot, but is still included
in all calculations. According to its
website, http://smartgunlaws.org,
the LCPGV is “a national law center
focused on providing comprehensive le-
gal expertise in support of gun violence
prevention and the promotion of smart
gun laws that save lives.” You can read
a full description of the methodology
used to grade states at this link.

In the chloropleth map in Figure 7.2, the fill color indicates each
state’s gun-murder rate in 2010: blue is lower, red is higher. The
outline color indicates whether a state’s gun-control laws received
a passing or failing grade from the Law Center to Prevent Gun
Violence (LCPGV). The center graded each state’s gun laws on an
A–F letter-grade scale; here “failing” means a grade of F. In the
figure, a black outline means a passing grade, while a grey outline
means a failing grade.

The right panel of Figure 7.2 summarizes the relationship be-
tween gun laws and gun violence via a dot plot, together with the
median for each group in blue. We use the median rather than the
mean to estimate the center of each group, because the median is
more robust to outliers; a clear example of an outlier here is Wash-
ington (D.C.), which at 16.2 gun murders per 100,000 people has a
drastically higher rate than everywhere else in the country.

This dotplot shows that the median murder rate of states with
a failing gun-laws grade is 3 murders per 100,000 people, while
the median murder rate of states with a passing grade is 2.2 per

http://smartgunlaws.org
http://smartgunlaws.org/wp-content/uploads/2012/11/Point-Assignment-Methodology.pdf
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100,000. On the face of it, it would seem as the states with stricter
gun laws have lower murder rates.

Let’s aside for a moment the fact that correlation does not es-
tablish causality. We will instead address the question: could this
association have arisen due to chance? To make this idea more
specific, imagine we took all 50 states and randomly divided them
into two groups, arbitrarily labeled the “passing" states and the
“failing” states. We would expect that the median murder rate
would differ a little bit between the two groups, simply due to ran-
dom variation (for the same reason that hands in a card game vary
from deal to deal). But how big of a difference between these two
groups could be explained by chance?

Null and alternative hypotheses

Thus there are two hypotheses that can explain Figure 7.2:

(1) There is no systematic relationship between murder rates and
gun laws; the observed observed relationship between murder
rates and gun laws is consistent with other unrelated sources
of random variation.

(2) The observed relationship between murder rates and gun laws
is too large to be consistent with random variation.

We call hypothesis 1 the null hypothesis, often denoted H0. Loosely,
it states that nothing special is going on in our data, and that any
relationship we thought might have existed isn’t really there at
all.2 Meanwhile, hypothesis 2 is alternative hypothesis. In some

2 “Null hypothesis” is a term coined
in the early twentieth century, back
when “null” was a common synonym
for “zero” or “lacking in distinctive
qualities.” So if the term sounds dated,
that’s because it is.

cases the alternative hypothesis may just be the logical negation of
the null hypothesis, but it can also be more specific.

In the approach to hypothesis testing that we’ll learn here, we
don’t focus a whole lot on the alternative hypothesis.3 Instead, 3 Specifically, this approach is called

the Fisherian approach, named after
the English statistician Ronald Fisher.
There are more nuanced approaches
to hypothesis testing in which the
alternative hypothesis plays a major
role. These include the Neyman–
Pearson framework and the Bayesian
framework, both of which are widely
used in the real world, but which are a
lot more complicated to understand.

we set out to check whether the null hypothesis looks plausible in
light of the data—just as we did when we tried to check whether
randomness could explain the Patriots’ impressive run of 19 out of
25 coin flips won.

A permutation test: shuffling the cards

In the Patriots’ coin-flipping example, we could easily simulate
data under the null hypothesis, by programming a computer to
repeatedly flip a virtual coin and keep track of the winner. But of
course, most real-life hypothesis-testing situations don’t involve
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Murder rates and gun laws under permutation

Figure 7.3: This map is almost iden-
tical to Figure 7.2, with one crucial
difference: the identities of the states
with passing and failing grades have
been randomly permuted. There is
still a small difference in the medians
of the notionally passing and failing
groups, due to random variation in the
permutation process.

actual coin flips, which makes the virtual coin-flipping approach
somewhat unhelpful as a general strategy.

It turns out, however, that in most situations, we can still har-
ness the power of Monte Carlo simulation to understand what our
data would look like if the null hypothesis were true. Rather than
flipping virtual coins, we run something called a permutation test,
which involves repeatedly permuting (or shuffling) the predictor
variable and recalculating the statistic of interest.

To understand how this works, let’s see an example. Figure 7.3
shows a map and dotplot very similar to those in Figure 7.2, with
one crucial difference: in Figure 7.3, the identities of the states
with notionally “passing” and “failing” gun laws have been ran-
domly permuted. These grades bear no correspondence to reality.
It’s as though we took a deck of 51 cards, each card having some
state’s grade on it (treating D.C. as a state); shuffled the deck; and
then dealt one card randomly to each state. The mathematical
term for this is a permutation of the grades.

As expected, the median gun-murder rates of these two ran-
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Murder rates and gun laws under permutation

Figure 7.4: Six maps with permutated
gun-law grades, with the medians for
the passing and failing groups.
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dom chosen “passing” and “failing” groups aren’t identical (right
panel). The randomly chosen “failing” states have a median of 2.6,
while the randomly chosen “passing” states have a slightly larger
median of 2.8. Clearly we can get a difference in medians of at
least 0.2 quite easily, just by random chance—that is, when the null
hypothesis is true by design.

But Figure 7.3 shows the difference in medians for only a sin-
gle permutation of the states’ gun-law grades. This permutation
is random, and a different permutation would have given as a
slightly different answer. Therefore, to assess whether could we
get a difference in group medians as large as 0.8 just by random
chance, we need to try several more permutations.

Figure 7.4 shows 6 more maps generated using the same per-
mutation procedure. For each map, we shuffle the grade variables
for all the states and recompute the median murder rates for the
notionally “passing” and “failing” groups. Each map leads to its
own difference in medians. In some maps, the difference is pos-
itive (“passing” states are higher), while in others it is negative
(“failing” are states higher). In at least one of the 6 maps—the
bottom right one—the median for the “failing” states exceeds
the median for the “passing” states by more than 1 murder per
100,000 people, just by chance. This is a larger difference than we
see for the real map, in Figure 7.2.

Six permutations give us some idea of how much a difference
in the medians we could expect to see if the null hypothesis were
true. But ideally we’d have many more than 6. Figure 7.5 ad-
dresses this need, showing the result of a much larger Monte Carlo
simulation in which we generated 5,000 random maps, each one
with its own random permutation of the states’ gun-law grades.
For each of these 5,000 maps, we computed the difference in medi-
ans between the notionally passing and failing groups. These 5,000
differences in group medians across the 5,000 maps are shown as a
histogram in Figure 7.5.

Hypothesis testing: a four-step process

Let’s review the vocabulary that describes what we’ve done here.
First, we specified a null hypothesis: that the correlation between
rates of gun violence and state-level gun policies could be ex-
plained by other unrelated sources of random variation. We de-
cided to measure this correlation using a specific statistic: the
difference in medians between the states with passing grades and
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Figure 7.5: The histogram shows the
difference in group medians for 5,000
simulated maps generated by the same
permutation procedure as the 6 maps in
Figure 7.4. Negative values indicate that
the “failing” states had higher rates of
gun violence than the “passing” states.
The actual difference in medians for
the real map in Figure 7.2 is shown
as a vertical red line. This difference
seems to be consistent with (although
does not prove) the null hypothesis that
other sources of random variation, and
not necessarily state-level gun policy,
explains the observed difference in
murder rates.

those with failing grades. (Remember that a statistic is just some
numerical summary of a data set.) To give this statistic a name,
let’s call it D (for difference in medians). It’s intuitively clear that
the larger D is, the less plausible the null hypothesis seems.

Figure 7.5 quantifies this intuition by giving us an idea of how
much variation we can expect in the sampling distribution of our
D statistic under the hypothesis that there is no systematic rela-
tionship between gun laws and rates of gun violence. As before,
the sampling distribution is simply the probability distribution of
the statistic under repeated sampling from the population—in this
case, assuming that the null hypothesis is true.

There are two possibilities here, corresponding to the null and
alternative hypotheses. First, suppose that we frequently get at
least as extreme a value of D for a random map, like those in Fig-
ure 7.4, as we do in the real map from Figure 7.2. Then there’s no
reason to be especially impressed by the actual value of d = �0.8
we calculated from the real map.4 It could have easily happened

4 We use the lower-case d to denote
the value of the test statistic for your
specific sample, to distinguish it from
the D’s simulated under permutation.

by chance. Hence we will be unable to reject the null hypothesis;
it could have explained the data after all. (An important thing
to remember is that failing to reject the null hypothesis is not the
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same thing as accepting the null hypothesis as truth. To use a rela-
tionship metaphor: failing to reject the null hypothesis is not like
getting married. It’s more like agreeing not to break up this time.)

On the other hand, suppose that we almost always get a smaller
value of D in a random map than we do in the real map. Then
we will probably find it difficult to believe that the correlation in
the real map arose due to chance. We will instead be forced to
reject the null hypothesis and conclude that it provides a poor
description of the observable data.

Which of these two possibilities seems to apply in Figure 7.5?
Here, the actual difference of �0.8 for the real map in Figure 7.2
is shown as a vertical red line. It’s position on the histogram sug-
gests possibility (1) here: d = �0.8 is consistent with (although
does not prove) the null hypothesis that other sources of random
variation unrelated to state-level gun policy can explain the ob-
served difference in murder rates between the passing-grade and
the failing-grade states.

To summarize, the four steps we followed above were:

(1) Choose a null hypothesis H0, the hypothesis that there is no
systematic relationship between the predictor and response
variables.

(2) Choose a test statistic D that is sensitive to departures from the
null hypothesis.

(3) Approximate P(D | H0), the sampling distribution of the test
statistic T under the assumption that H0 is true.

(4) Assess whether the observed test statistic for your data, d, is
consistent with P(D | H0).

For the gun-laws example, our test statistic in step (2) was the
difference in medians between the “passing” states and the “fail-
ing” states. We then accomplished step (3) by randomly permuting
the values of the predictor (gun laws) and recomputing the test
statistic for the permuted data set. This shuffling procedure is
called a permutation test when it’s done in the context of this
broader four-step process. There are other ways of accomplishing
step (3)—for example, by appealing to probability theory and do-
ing some math. But the permutation test is nice because it works
for any test statistic (like the difference of medians in the previous
example), and it doesn’t require any strong assumptions.
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