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Back to the Salary Discrimination Case

We left off by fitting the model:

Salaryi = β0 + β1Malei + β2Expi + εi
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Does it look like the effect of experience on salary is the same for

males and females? 2



Back to the Salary Discrimination Case

Could we try to expand our analysis by allowing a different slope

for each group?

Yes! Consider the following model:

Salaryi = β0 + β1Expi + β2Malei + β3Expi ×Malei + εi

For Females:

Salaryi = β0 + β1Expi + εi

For Males:

Salaryi = (β0 + β2) + (β1 + β3)Expi + εi
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Salary Discrimination Case

What do the data look like?

Exp Gender Salary Male Exp*Male

1 3 Male 32.00 1 3

2 14 Female 39.10 0 0

3 12 Female 33.20 0 0

4 8 Female 30.60 0 0

5 3 Male 29.00 1 3

... ... ...

208 33 Female 30.00 0 0

R will make the dummy variable Male and the interaction term

Exp*Male for us
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Salary Discrimination Case

salaryfit_int = lm(Salary~Gender*Exp, data=salary)

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 34.2483 1.2274 27.903 < 2e-16 ***

## GenderMale -5.3461 1.7766 -3.009 0.00295 **

## Exp 0.2800 0.1025 2.733 0.00684 **

## GenderMale:Exp 1.2478 0.1367 9.130 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 6.816 on 204 degrees of freedom

## Multiple R-squared: 0.6386,Adjusted R-squared: 0.6333

## F-statistic: 120.2 on 3 and 204 DF, p-value: < 2.2e-16

Is this good or bad news for the plaintiff?
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Salary Discrimination Case

In our new model the gender gap in wages is different depending

on the experience of the employee:
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The expected male salary minus the expected female salary is:

β2 + β3Exp
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Salary Discrimination Case

We can report estimates & confidence intervals for the wage gap

at different levels of experience using the bootstrap:

gap1 = do(1000) * {
fit = lm(Salary ~ Gender * Exp, data = resample(salary))

betas = coef(fit)

exper = 5 # 25th percentile of experience

betas[2] + betas[4]*exper

}

confint(gap1)

## name lower upper level method estimate

## 1 GenderMale -1.206776 3.165836 0.95 percentile 0.8929416
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Salary Discrimination Case

We can report estimates & confidence intervals for the wage gap

at different levels of experience using the bootstrap:

gap2 = do(1000) * {
fit = lm(Salary ~ Gender * Exp, data = resample(salary))

betas = coef(fit)

exper = 10

betas[2] + betas[4]*exper

}

confint(gap2)

## name lower upper level method estimate

## 1 GenderMale 5.206036 9.097281 0.95 percentile 7.131933
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Salary Discrimination Case

Salary = β0 + β1Male + β2Exp + β3Exp ∗Male + ε

plotModel(salaryfit_int, Salary~Exp)
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Salary = 34− 4Male + 0.28Exp + 1.24Exp ∗Male + ε
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Interaction Terms vs Group-Specific Models

We could have gotten similar results by fitting linear models for

males and females separately. Why use interaction terms?

If we want to include other variables with effects on salary that

don’t differ by gender – for example:

Salary = β0 + β1Male + β2Exp + β3Exp ∗Male + β4College + ε

we can’t use data subsetting.

Interaction terms are the exception, not the rule!
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Interaction Terms: Other Cases

We can interact two continuous variables too:

Y = β0 + β1X1 + β2X2 + β3(X1X2) + ε

Fixing X1 at d we have a line in Y and X2:

Y = (β0 + β1d) + (β2 + β3d)X2 + ε

So the effect of a unit increase in X2 on the predicted value of Y ,

holding X1 constant – given by the slope above – depends on d ,

the actual value where we hold X1 constant.

To interact two categorical variables, it’s easiest to make one

combined categorical variable that takes each possible comination

of the original two variables
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Example: College GPA and Age

Consider the relationship between undergrad and MBA grades:

A model to predict McCombs GPA from undergrad GPA could be

GPAMBA = β0 + β1GPA
Bach + β2Age + ε

fit1 = lm(MBAGPA ~BachGPA+Age, data=gpa)

coef(fit1)

## (Intercept) BachGPA Age

## 3.66400247 0.19495068 -0.03024069

For every 1 point increase in college GPA, expected MBA GPA

increases by about .19 points, holding constant age. 12



College GPA and Age

Assumes that the partial effect

of College GPA is the same for any age.

It seems that how you did in college should have less effect on your

MBA GPA as you get older (farther from college).

We can account for this intuition with an interaction term:

GPAMBA = β0 + β1GPA
Bach + β2Age + β3(Age × GPABach) + ε

Now the effect of a one-point increase in undergrad GPA holding

constant Age is β1 + β3Age.

Depends on the value of Age!
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College GPA and Age

lm(MBAGPA ~ BachGPA*Age, data=gpa)

##

## Call:

## lm(formula = MBAGPA ~ BachGPA * Age, data = gpa)

##

## Coefficients:

## (Intercept) BachGPA Age BachGPA:Age

## -0.27964 1.36936 0.10974 -0.04181
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College GPA and Age

Without the interaction term

I Effect of College GPA controlling for Age is β̂1 = 0.26.

With the interaction term:

I Effect is β̂1 + β̂3Age = 1.37− 0.042Age.

Age Marginal Effect

24 0.36

27 0.24

30 0.11
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Interactions: Things to remember

You should almost never try to interpret/test the main effect of a

variable involved in an interaction. (You can’t hold the interaction

constant and vary the main effect!)

Usually if an interaction between two variables is present you

should include both main effects. (i.e., if X1X2 is a term in your

model you should also include X1 and X2 terms)
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When do I need an interaction term?

In MLR, if you want to study the effect of one variable (Gender)

on another (Salary) while controlling for (or holding constant )

a third (Experience), you don’t usually need an interaction.

You only need an interaction term if the relationship between the

two variables (Gender and Salary) depends on the specific value

of the other variable (Experience)

In our first example, it seemed like the wage gap was larger for

more experienced workers, which suggested an interaction term.
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