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Hypothesis testing in regression

To finish off this chapter, we will show how the permutation-
testing framework can be used to answer questions about partial
relationships in multiple regression modeling.

In a previous chapter, we asked the following question about
houses in Saratoga, NY: what is the partial relationship between
heating system type (gas, electric, or fuel oil) and sale price, once
we adjust for the effect of living area, lot size, and the number
of fireplaces? We fit a multiple regression model with these four
predictors, which led to the following equation:

Price = $29868 + 105.3 · SqFt + 2705 · log(Acres) + 7546 · Fireplaces

� 14010 · 1{fuel = electric} � 15879 · 1{fuel = oil} + Residual .

Remember that the baseline case here is gas heating, since it has
no dummy variable. Our model estimated the premium associated
with gas heating to be about $14,000 over electric heating, and
about $16,000 over fuel-oil heating.

But are these differences due to heating-system type statistically
significant, or could they be explained due to chance?

To answer this question, you could look at the confidence in-
tervals for every coefficient associated with the heating-system
variable, just as we learned to do in the chapter on multiple re-
gression. The main difference is that before, we had one coefficient
to look at, whereas now we have two: one dummy variable for
fuel = electric, and one for fuel = oil. Two coefficients means two
confidence intervals to look at.

Sometimes this strategy—that is, looking at the confidence
intervals for all coefficients associated with a single variable—
works just fine. For example, when the confidence intervals for
all coefficients associated with a single variable are very far from
zero, it’s pretty obvious that the categorical variable in question is
statistically significant.

But at other times, this strategy can lead to ambiguous results.
In the context of the heating-system type variable, what if the 95%
confidence interval for one dummy-variable coefficient contains
zero, but the other doesn’t? Or what if both confidence intervals
contain zero, but just barely? Should we say that heating-system
type is significant or not? This potential for ambiguous confidence
intervals gets even worse when your categorical variable has more
than just a few levels, because then there will be many more confi-
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dence intervals to look at.
The core of the difficulty here is that we want to assess the sig-

nificance of the heating-system variable itself, not the significance
of any individual level of that variable. To assess the significance
of the whole variable, with all of its levels, we’ll use a permutation
test. Specifically, we will compare two models:

• The full model, which contains variables for square footage,
lot size, number of fireplaces, and heating system.

• The reduced model, which contains variables for square footage,
lot size, and number of fireplaces, but not for heating sys-
tem. We say that the reduced model is nested within the full
model, since it contains a subset of the variables in the full
model, but no additional variables.

Remember the four basic steps in a
permutation test:

(1) Choose a null hypothesis H0.

(2) Choose a test statistic D that is
sensitive to departures from the
null hypothesis.

(3) Repeatedly shuffle the predictor
of interest and recalculate the
test statistic after each shuffle,
to approximate P(D | H0), the
sampling distribution of the test
statistic T under the assumption
that H0 is true.

(4) Check whether the observed
test statistic for your data, d, is
consistent with P(D | H0).

As always, we must start by specifying H0. Loosely speak-
ing, our null hypothesis is that the reduced model provides an
adequate description of house prices, and that the full model is
needlessly complex. To be a bit more precise: the null hypothesis
is that there is no partial relationship between heating system and
house prices, once we adjust for square footage, lot size, and num-
ber of fireplaces. This implies that all of the true dummy variable
coefficients for heating-system type are zero.

Next, we must pick a test statistic. A natural way to assess the
evidence against the null hypothesis is to use improvement in
R2 under the full model, compared to the reduced model. This
is the same quantity we look at when assessing the importance
of a variable in an ANOVA table. The idea is simple: if we see a
big jump in R2 when moving from the reduced to the full model,
then the variable we added (here, heating system) is important
for predicting the outcome, and the null hypothesis of no partial
relationship is probably wrong.

You might wonder here: why not use the coefficients on the
dummy variables for heating-system type as test statistics? The
reason is that there are two such coefficients (or in general, K � 1
coefficients for a categorical variable with K levels). But we need
a single number to use as our test statistic in a permutation test.
Therefore we use R2: it is a single number that summarizes the
predictive improvement of the full model over the reduced model.

Of course, even if we were to add a useless predictor to the re-
duced model, we would expect R2 to go up, at least by a little bit,
since the model would have more degrees of freedom (i.e. param-
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Figure 7.7: Sampling distribution of R2

under the null hypothesis that there is
no partial relationship between heating
system and price after adjusting for
effects due to square footage, lot size,
and number of fireplaces. The blue
vertical line marks the 95th percentile
of the sampling distribution (and so
corresponds to a rejection region at the
5% level). The red line marks the actual
value of R2 = 0.518 when we fit the
full model by adding heating system to
a model already containing the other
three variables.

eters) that it can use to predict the observed outcome. Therefore, a
more precise way of stating our null hypothesis is that, when we
add heating system to a model already containing variables for
square footage, lot size, and number of fireplaces, the improve-
ment we see in R2 could plausibly be explained by chance, even if
this variable had no partial relationship with price.

To carry out a hypothesis test, we need to approximate the
sampling distribution of R2 under the null hypothesis. We will
do so by repeatedly shuffling the heating system for every house
(keeping all other variables the same), and re-fitting our model
to each permuted data set. This breaks any partial relationship
between heating system and price that may be present in our data.
It tells us how big an improvement in R2 we’d expect to see when
fitting the full model, even if the null hypothesis were true.

This sampling distribution is shown in Figure 7.7, which was
generating by fitting the model to 10,000 data sets in which the
heating-system variable had been randomly shuffled, but where
the response and the variables in the reduced model have been
left alone. As expected, R2 of the full model under permutation is
always bigger than than the value of R2 = 0.513 from the reduced
model—but rarely by much. The blue line at R2 = 0.5155 shows
the 95th percentile of the sampling distribution (i.e. the critical
value for a rejection region at the 5% level). The red line shows
the actual value of R2 = 0.518 from the full model fit the original
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data set (i.e. with no shuffling). This test statistic falls far beyond
the 5% rejection region. We therefore reject the null hypothesis and
conclude that there is statistically significant evidence for an effect
on price due to heating-system type.

One key point here is that we shuffled only heating-system
type—or in general, whatever variable is being tested. We don’t
shuffle the response or any of the other variables. That’s because
we are interested in a partial relationship between heating-system
type and price. Partial relationships are always defined with re-
spect to a specific context of other control variables, and we have
to leave these control variables as they are in order to provide the
correct context for that partial relationship to be measured.

To summarize: we can compare any two nested models using a
permutation test based on R2, regardless of whether the variable in
question is categorical or numerical. To do so, we repeatedly shuf-
fle the extra variable in the full model—without shuffling either
the response or the control variables (i.e. those that also appear in
the reduced model). We fit the full model to each shuffled data set,
and we track the sampling distribution of R2. We then compare
this distribution with the R2 we get when fitting the full model to
the actual data set. If the actual R2 is a lot bigger than what we’d
expect under the sampling distribution for R2 that we get under
the permutation test, then we conclude that the extra variable in
the full model is statistically significant.

F tests and the normal linear regression model. Most statistical soft-
ware will produce an ANOVA table with an associated p-value for
all variables. These p-values are approximations to the p-values
that you’d get if you ran sequential permutation tests, adding and
testing one variable at a time as you construct the ANOVA table.
To be a bit more specific, they correspond to something called an F
test under the normal linear regression model that we met awhile
back:

yi = b0 +
p

Â
j=1

b jxij + ei , ei ⇠ N(0, s2) .

You might want to revisit the discussion of the normal linear re-
gression model starting on page 120. But the upshot is that an F
test is conceptually similar to a permutation test based on R2—and
if you’re happy with the assumption of normally distributed resid-
uals, you can treat the p-values from these two tests as virtually
interchangeable.8 8 If you’re not happy with this assump-

tion, then you’re better off with the
permutation test.


