Expected Value and Variance

Jared S. Murray
The University of Texas at Austin
McCombs School of Business

Probability and Decisions

- So you've tested positive for a disease. Now what?
- Let's say there's a treatment available. Do you take it?
- What additional information (if any) do you need?
- We need to understand the probability distribution of outcomes to assess (expected) returns and risk

Example: Drug Investment

You are presented with the opportunity to invest in the development of a drug... should you do it?

Example: Drug Investment

We have a random variable, our revenue, with the following probabilities...

Revenue	$P($ Revenue $)$
$\$ 250,000$	0.7
$\$ 0$	0.138
$\$ 25,000,000$	0.162

Should we invest? How much would be reasonable to invest?

Probability and Decisions

What if the distribution of revenue looked like this instead?
Would you prefer this investment?

Revenue	$P($ Revenue $)$
$\$ 3,721,428$	0.7
$\$ 0$	0.138
$\$ 10,000,000$	0.162

Expected Value and Variance of a Random Variable

The Expected Value (or mean) of a random variable X is defined as (for a discrete X with n possible outcomes):

$$
E(X)=\sum_{i=1}^{n} \operatorname{Pr}\left(X=x_{i}\right) \times x_{i}
$$

We weight each possible value by how likely they are... this provides us with a measure of centrality of the distribution and a "good" prediction for X.

Example: Mean and Variance of a Binary Random Variable

Suppose

$$
\begin{gathered}
X=\left\{\begin{array}{lll}
1 & \text { with prob. } & p \\
0 & \text { with prob. } & 1-p
\end{array}\right. \\
E(X)=?
\end{gathered}
$$

Mean and Variance of a Random Variable

The Variance is defined as (for a discrete X with n possible outcomes):

$$
\operatorname{Var}(X)=\sum_{i=1}^{n} \operatorname{Pr}\left(X=x_{i}\right) \times\left[x_{i}-E(X)\right]^{2}
$$

Weighted average of squared prediction errors... This is a measure of spread of a distribution. More risky/unpredictable distributions have larger variance.

Example: Mean and Variance of a Binary Random Variable

Suppose

$$
\begin{gathered}
X=\left\{\begin{array}{lll}
1 & \text { with prob. } & p \\
0 & \text { with prob. } & 1-p
\end{array}\right. \\
\operatorname{Var}(X)=?
\end{gathered}
$$

Question: For which value of p is the variance the largest? For which value of p is the outcome least predictable?

The Standard Deviation

- What are the units of $E(X)$? What are the units of $\operatorname{Var}(X)$?
- A more intuitive way to understand the spread of a distribution is to look at the standard deviation:

$$
\operatorname{sd}(X)=\sqrt{\operatorname{Var}(X)}
$$

- What are the units of $\operatorname{sd}(X)$?

Mean, Variance, Standard Deviation: Summary

What to keep in mind about the mean, variance, and SD:

- The expected value/mean is usually our best prediction of an uncertain outcome. ("Best" meaning closest in distance to the realized outcome, using a particular measure of distance)
- The variance is often a reasonable summary of how unpredictable an uncertain outcome is (or how risky it is to predict)
- The standard deviation (square root of the variance) is another reasonable summary of risk/unpredictability that is on a meaningful scale.

