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Data exploration

Supply and demand, chocolate and peanut butter, education and
income . . . some things just go hand in hand. In each case, a par-
ticular idea about how things work turns upon the interpretation
of an observed relationship between things we can measure. To
do this correctly requires care, judgment—and the right toolkit.
The goal of this chapter is to equip you with some basic visual and
numerical tools for exploring multivariate data sets, with an eye
towards finding interesting relationships among variables.

Cases and variables. In statistics, we typically refer to the cases and
variables of a data set. The cases are the basic observational units
that we’re interested in: people, houses, cars, guinea pigs, etc. The
variables are the different kinds of information we have about each
case—for example, the horsepower, fuel economy, and vehicle class
for a car. We typically organize a data set into a data frame. A data
frame is like a simple spreadsheet where each case is a row and
each variable is a column, like in Table 1.1.

Variables come in two basic kinds. Numerical variables are rep-
resented by a number, like horsepower. Categorical variables are
described by the answer to a multiple-choice question, like vehicle
class. This chapter will describe some strategies for summariz-
ing relationships among both kinds of variables, as well as some
further refinements to this basic “numerical versus categorical”
distinction.

Table 1.1: A simple example of a data
frame. Each case is a car, and there
are five variables: horsepower, city gas
mileage, highway gas mileage, weight
(in pounds), and vehicle class.

Horsepower CityMPG HighwayMPG Weight Class

BMW 325xi 184 19 27 3461 Sedan
Chevrolet Corvette 350 18 25 3248 Sports

Mercedes-Benz CL500 302 16 24 4085 Sedan
Dodge Neon 132 29 36 2626 Sedan
Acura MDX 265 17 23 4451 SUV
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Variation across categories

Many of the data sets you’ll meet will involve categories: choco-
late or vanilla; rap or country; Toyota, Honda, or Hyundai; butcher
or baker or candlestick maker. A simple, effective way to summa-
rize these categorical variables1 is to use a contingency table. On the 1 Categorical variables are sometimes

referred to as factors, and the categories
themselves as the levels of the factor.
The R statistical software package uses
this terminology.

Titanic, for example, a simple two-way table reveals that women
and children survived in far greater numbers than adult men:

Girl Woman Boy Man

Survived 50 242 31 104
Died 22 74 51 472

Table 1.2: A two-way table, because
there are two categorical variables by
which cases are classified. The data
are available in the R package effects.
Originally compiled by Thomas Cason
from the Encyclopedia Titanica.

We call this a two-way or bivariate table because there are two
variables are being compared: survival status versus type of per-
son. The categories go along the rows and columns of the table;
the cell counts show how many cases fall into each class. The pro-
cess of sorting cases into the cells of such a table is often called
cross-tabulation.

We can also make multi-way tables that show more than two
variables at once. Given the constraints of a two-dimensional page,
multiway tables are usually displayed as a series of two-way ta-
bles. As the following three-way table reveals, richer passengers, of
either sex, fared better than others.

Cabin Class 1st 2nd 3rd

Female
Survived 139 94 106

Died 5 12 110

Male
Survived 61 25 75

Died 118 146 418

Table 1.3: An example of a multi-way
table, where counts are classified by
cabin class, sex, and survival. NB: pas-
sengers of unknown age are included in
this table, but not the previous one.

Tables are almost always the best way to display categorical data
sets with few classifying variables, for the simple reason that they
convey a lot of information in a small space.2 2 This animation provides some good

guidelines for formatting tables.

Ordinal and binary variables. If a categorical variable has only
two options (heads or tails, survived or died), we often call it an
indicator, binary, or dummy variable. (These names can be used
interchangeably.)
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Some categories have a natural ordering, like measures of sever-
ity for a hurricane, or responses to a survey about consumer satis-
faction. (Has your experience with our call center been Atrocious,
Merely Bad, Acceptable, Good, or Excellent?) These are called or-
dinal variables. Ordinal variables differ from numerical variables in
that, although they can be placed in a definite order, they cannot
be compared using the laws of arithmetic. For example, we can’t
subtract “Good” from “Excellent” and get a meaningful answer, in
the way we can subtract $1000 from $5000 and get a number.

Relative risk

The relative risk, sometimes also called the risk ratio, is a widely
used measure of association between two categorical variables.
To introduce this concept, let’s examine a tidbit of data from the
PREDIMED trial, a famous study on heart health conducted by
Spanish researchers that followed the lifestyle and diet habits of
thousands of people over many years, beginning in 2003.3 3 Estruch R, Ros E, Salas-Salvado J, et al.

Primary prevention of cardiovascular
disease with a Mediterranean diet. N
Engl J Med 2013;368:1279-1290. The
full text of the article is available at
http://www.nejm.org/doi/full/10.
1056/NEJMoa1200303

The main purpose of the PREDIMED trial was to assess the
effect of a Mediterranean-style diet on the likelihood of some-
one experiencing a major cardiovascular event (defined by the
researchers as a heart attack, stroke, or death from cardiovascular
causes). But as part of the study, the researchers also collected data
on whether the trial participants were, or had ever been, regular
smokers. The table below shows the relationship between smoking
and whether someone experienced a cardiovascular event during
the study period.

Current or former smoker?
No (n = 3892) Yes (n = 2432)

No event 3778 2294
Event 114 138

Let’s compare the absolute risk of cardiovascular events for
smokers, versus that of non-smokers.4 Among the smokers, 138 4 By “absolute risk,” we simply mean

the chance of an event happening.of 2432 people (5.7%) experienced an event; while among the
non-smokers, 114 of 3892 people (2.9%) experienced an event. To
compute the relative risk of cardiovascular events among smokers,
we take the ratio of these two absolute risks:

Relative risk =
138/2432
114/3892

= 1.94 .
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This ratio says that smokers were 1.94 times more likely than non-
smokers to experience a cardiovascular event during the study.5 5 Of course, this doesn’t prove that the

smoking caused the cardiovascular
events. One could argue that the smok-
ers may have had other systematically
unhealthier habits that did them in
instead, and the smoking was merely a
marker of these other habits. We’ll soon
talk about this issue of confounding
much more.

More generally, for any event (a disease, a car accident, a mort-
gage default) and any notion of “exposure” to some factor (smok-
ing, driving while texting, poor credit rating), the relative risk is

Relative risk =
Risk of event in exposed group

Risk of event in non-exposed group
.

The relative risk tells us how much more (or less) likely the event
is in one group versus another. It’s important to remember that the
relative risk (in our example, 1.94 for smokers) is quite different
from the absolute risk (in our example, 0.057 for smokers). This
distinction is often missed or elided in media coverage of health
issues. See, for example, this blog post from the UK’s cancer-
research funding body about news reports of cancer studies.

Variation of numerical variables

Figure 1.1 depicts a histogram of daily average temperatures in
two American cities—San Diego, CA, and Rapid City, SD—for
every day from January 1995 to November 2011. Temperature is
an example of a numerical variable, or something for which numer-
ical comparisons are meaningful (twice as far, six times as fast,
$17 cheaper, and so forth). Numerical variables can be discrete or
continuous. Temperature is continuous; we measure it in arbitrar-
ily small increments. Marbles, on the other hand, are discrete; we
count them on our fingers and toes.

A histogram is a great way to depict the distribution of a nu-
merical variable. To construct one, we first partition the range of
possible outcomes (here, temperatures) into a set of disjoint in-
tervals (“bins”). Next, we count the number of cases that fall into
each bin. Finally, we draw a rectangle over each bin whose height
is equal to the count within each bin.6 6 Technically this is called a frequency

histogram; one could also make a
density histogram in which the heights of
the bars are scaled appropriately so that
the total area of all the bars sums to 1.

The histogram in Figure 1.1 suggest two obvious, meaningful
questions we can ask about a numerical variable like temperature:
where is the middle of the sample, and how much does a typical
case vary from the middle?

You’re probably already aware of more than more way to an-
swer the question, “Where is the middle?”

• There’s the sample mean, written as ȳ. If we have n data
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Figure 1.1: Daily average temperatures
for San Diego and Rapid City, 1995–
2011. These data are visualized in
a histogram, which is a simple and
effective way to depict the variation of a
single numerical variable across many
cases.

points {y1, . . . , yn}, then

ȳ =
1
n

n

Â
i=1

yi .

The subscript i’s run from case 1 to case n, where n is the
number of data points in the sample. In many data sets the
actual ordering of cases won’t matter, and will just reflect the
arbitrary ordering of the rows in your data frame.7 7 An obvious exception is in the analysis

of time-series data, where the ordering
of observations in time may be highly
meaningful.

• There’s the median, or the halfway point in a sample.

• There’s also the mode, or the most common value.

These different ways of quantifying the middle value all have
different properties. For example, the median is less sensitive than
the mean to extreme values in your sample; there can be more
than one mode in a sample, but only one mean or median.8 8 For example, consider the data set

{1, 2, 3, 3, 4, 4, 5}.

Sample standard deviation and sample variance

Another important question is, “How spread out are the data
points from the middle?” Figure 1.1 drives home the importance
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of dispersion in making useful comparisons. Not only are average
temperatures lower overall in Rapid City than in San Diego, but
they are also a lot more variable: the coldest days are much colder
in Rapid City, but the hottest days are hotter, too.

As with the notion of “middle” itself, there is more than one
way of quantifying variability, and each way is appropriate for
different purposes. Let’s follow the line of thinking that leads us to
the standard deviation, which is probably the most common way of
measuring dispersion. Suppose we choose to measure the middle
of a sample y1, . . . , yn using the mean, ȳ. Each case varies from
this middle value by its deviation, yi � ȳ. Why not, therefore, just
compute the average deviation from the mean? Well, because

1
n

n

Â
i=1

(yi � ȳ) =
1
n

n

Â
i=1

yi � n
n

ȳ

= ȳ � ȳ

= 0 .

The positives and negatives cancel each other out. We could cer-
tainly fix this by taking the absolute value of each deviation, and
then averaging those:

M =
1
n

n

Â
i=1

|yi � ȳ| .

This quantity is a perfectly sensible measure of the “typical de-
viation” from the middle. Fittingly enough, it is called the mean
absolute deviation of the sample.

But it turns out that, for the purposes of statistical modeling, a
quantity called the sample variance makes more sense:

s2 =
1

n � 1

n

Â
i=1

(yi � ȳ)2 .

That is, we square each deviation from ȳ, rather than take the ab-
solute value. Remember that when we square a negative number,
it becomes positive, so that we don’t have the problem of the posi-
tives and negatives cancelling each other out.

The definition of sample variance raises two questions:

(1) Why do we divide by n � 1, when dividing by n would seem
to make more sense for computing an average?

(2) Why do we square the deviations, instead of taking absolute
values as above?
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To answer the first question: we divide by n � 1 rather than n
for obscure technical reasons that, despite what you may read in
other statistics textbooks, just aren’t that important. (It has to do
with “unbiased estimators,” which, despite the appealing name,
are overrated.) Mainly we use n � 1 to follow convention.

As for the second question: because sums of squares are spe-
cial! In all seriousness, there are deep mathematical reasons why
we choose to measure dispersion using sums of squared devia-
tions, rather than the seemingly more natural sums of absolute
deviations. You’ll learn why in a future chapter, but it you want a
preview, think about Pythagoras and right triangles. . . .

Of course, computing the sample variance leaves us in the awk-
ward position of measuring variation in the squared units of what-
ever our variable is measured in. This is not intuitive; imagining
telling someone that the mean temperature in Rapid City over
the last 17 years was 47.3 degrees Fahrenheit, with a sample vari-
ance of 402 degrees squared. This is a true statement, but nearly
uninterpretable.

Luckily, this is easily fixed by taking the square root of the
sample variance, giving us the sample standard deviation:

s =

s
1

n � 1

n

Â
i=1

(yi � ȳ)2 . (1.1)

Now we’re back to the original units, and an interpretable mea-
sure of “typical deviation from the middle”—for Rapid City, 20.1
degrees. This looks about right from the histogram below; the
blue dot is the sample mean, and the blue line stretches 1 sample
standard deviation to either side of the mean.
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Figure 1.2: The histogram shows
average daily temperatures in Rapid
City. The blue dot is the sample mean,
and the blue line shows an interval
encompassing one sample standard
deviation to either side of the sample
mean.

Two other simple measures of spread are worth mentioning
briefly. First, there’s the range, or the difference between the largest
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and smallest values in the sample. There’s also the interquartile
range, or the difference between the 75th and 25th percentiles. This
is robust to extreme values, since it involves only the middle 50%
of the sample.

Percentiles, quantiles, and coverage intervals

Another useful way to summarize the variation of a numerical
variable across cases is to compute a set of percentiles, also called
quantiles. A familiar example is the median: it happens that ex-
actly 50% of the daily average temperatures in Rapid City fall be-
low fall below 47.6 degrees, and we call this point the median (or
the 50th percentile). Similarly, 10% of days in Rapid City are colder
than 20.7 degrees, and 90% of days are colder than 73.2 degrees;
these are the 10th and 90th percentiles, respectively. A quantile is
just a percentile expressed in terms of a decimal fraction; the 80th
percentile and 0.8 quantile are the same number.

A common way to summarize a distribution of a numerical
variable is to quote a coverage interval defined by two percentiles,
like the 10th and 90th percentiles (which covers 80% of the cases)
or the 2.5th and 97.5th percentiles (which covers 95% of the cases).
So, for example, we might quote an 80% coverage interval for
daily average temperatures in Rapid City as (20.7, 73.2), whose
endpoints are formed from the 10th and 90th percentiles.

Standardization by z-scoring

Which temperature is more extreme: 50 degrees in San Diego, or
10 degrees in Rapid City? In an absolute sense, of course 10 de-
grees is a more extreme temperature. But what about in a relative
sense? In other words, is a 10-degree day more extreme for Rapid
City than a 50-degree day is for San Diego? This question could cer-
tainly be answered using quantiles, which you’ve already learned
how to handle. But let’s discuss a second way: by calculating a
z-score for each temperature.

The z-score of some quantity x is the number of standard devi-
ations by which x is above its mean. If a z-score is negative, then
the corresponding observation is below the mean.

To calculate a z-score for a number x, we subtract the corre-
sponding mean µ and divide by the standard deviation s:

z =
x � µ

s
.
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For a 50-degree day in San Diego, this is:

z =
50 � 63.1

5.7
⇡ �2.3 .

Or about 2.3 standard deviations below the mean. On the other
hand, for a 10-degree day in Rapid City, the z-score is

z =
10 � 47.3

20.1
⇡ �1.9 .

Or about 1.9 standard deviations below the mean. Thus a 50-
degree day in San Diego is actually more extreme than a 10-degree
day in Rapid City! The reason is that temperatures in Rapid City
are both colder on average (lower mean) and more variable (higher
standard deviation) than temperatures in San Diego.

As this example suggests, z-scores are useful for comparing
numbers that come from different distributions, with different
statistical properties. It tells you how extreme a number is, relative
to other numbers from that some distribution. We often think of
the normal distribution as a useful reference here for interpreting
z-scores. The normal distribution has the property that about 68%
of observations fall within z = 1 standard deviation of the mean,
and about 95% fall within z = 2 standard deviations.

Variation between, and within, groups

A common situation is that we have both categorical and nu-
merical data about each case in a data set. For example, Table 1.4
below shows the average SAT math and verbal scores, stratified by
college, for undergraduates in the incoming fall of 2000 freshmen
class at the University of Texas at Austin. All 5,191 students who
went on to receive a bachelor’s degree within 6 years are included;
those who dropped out, for whatever reason, are not.

The table tells you something about how the numerical vari-
ables (test scores) change depending upon the categorical variable
(college), and they are superficially similar to the contingency ta-
bles we just encountered. They highlight interesting and useful
facts about variation between the groups. Math skills, for example,
are probably more important for engineering majors than English
majors, and this is reflected in the differences between the group-
level means.
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Average SAT
College Math Verbal

Architecture 685 662
Business 633 597
Communications 592 609
Education 555 546
Engineering 675 606
Fine Arts 597 594
Liberal Arts 598 590
Natural Sciences 633 597
Nursing 561 555
Social Work 602 589

Table 1.4: Average SAT math and verbal
scores, stratified by college, for entering
freshmen at UT–Austin in the fall of
2000. Collected under the Freedom of
Information Act from the state of Texas.

Table 1.4 does differ from a contingency table, however, in one
crucial respect: the entries in the table are not counts, but group-
level averages. Notice that, to depict between-group variation, the
table has reduced each college to a typical case, represented by
some hypothetical student who earned the college-wide average
SAT scores on both the math and verbal sections. In doing so,
it has obscured the underlying variability of students within the
colleges. But as our example of city temperatures demonstrated,
sometimes this variability is an important part of the story as well.

Boxplots

This is where boxplots are useful: they allow you to assess vari-
ability both between and within the groups. In a boxplot, like the
ones shown in Figure 1.3, there is one box per category. (The top
panel shows a boxplot for SAT Math scores; the bottom, for SAT
Verbal scoers.) Each box shows the within-group variability, as mea-
sured by the interquartile range of the numerical variable (SAT
score) for all cases in that category. The middle line within each
box is the median of that category, and the differences between
these medians give you a sense of the between-group variability. In
this boxplot, the whiskers extend outside the box no further than
1.5 times the interquartile range. Points outside this interval are
shown as individual dots.

A table like 1.4 focuses exclusively on the between-group vari-
ability; it reduces each category to a single number, and shows
how those numbers vary from one category to the next. But in
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Figure 1.3: Boxplots of the full data set
used to form the means in Table 1.4.
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Vitamin C dose (milligrams)
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within-group means is below. Notice
how the within-group variability
evident in the boxplots at left simply
disappears when presented in the form
of a summary table, below:

many data sets, it is actually the within-group variability that mat-
ters most. For example, as Figure 1.3 shows, SAT scores vary much
more within a college as they do between colleges. For example,
there is 52-point difference in average SAT math scores between
Architecture students and Natural Science students. But within
Natural Sciences, the interquartile range is nearly twice as large:
100 points.

Dose (mg) Tooth len.

0.5 7.98
1.0 16.77
2.0 26.14

The situation is quite different Figure 1.4. These boxplots show
the growth of guinea pigs’ teeth versus their daily dosage of Vi-
tamin C. Like humans, but unlike most other mammals, guinea
pigs need Vitamin C to keep rollin’, yet they cannot synthesize
their own. Their vitamin C intake is strongly predictive of their
overall health, measured in this case by the length of their teeth.
In this boxplot, we see comparatively more variability between the
groups, whose boxplots almost don’t overlap.

The same comparison will come up again and again: between-
group variability (the differences between typical or average group
members) versus within-group variability (the variation of cases
within a single group). We’ll soon make this comparison mathe-
matically rigorous, but these examples convey the essence of the
idea:

• A UT student’s college tells you something, though not ev-
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erything, about his or her likely SAT scores.

• A guinea pig’s Vitamin C regimen tells you something,
though not everything, about its tooth growth. But in a rela-
tive sense, it tells you more than a UT student’s college tells
you about his or her SAT scores.

Always remember that a table of group-wise means does not de-
pict “data” as such, but an abstraction of some typical group mem-
ber. This abstraction may be useful for some purposes. But within-
group variability is also important, and may even be the dominant
feature of interest. In this case, presenting the group-wise means
alone, without the corresponding plots or measures of variability,
may obscure more than it reveals.

Dot plots

Predation Index (5 = most in danger)
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Figure 1.5: Dreaming hours per night
versus danger of predation for 50 mam-
malian species. Data from: “Sleep in
Mammals: Ecological and Constitu-
tional Correlates,” Allison and Cicchetti
(1976). Science, November 12, vol. 194,
pp. 732-734. Photo of the dreaming crit-
ter from the MIT News office (web.mit.
edu/newsoffice/2001/dreaming.html).

The dot plot is a close cousin of the boxplot. For example, the
plot in Figure 1.5 depicts a relationship between the length of
a mammal’s dreams (as measured in a lab by an MRI machine)
and the severity of the danger it faces from predators. Each dot
is a single species of mammal—like, for example, the dreaming
critter at right. The predation index is an ordinal variable running
from 1 (least danger) to 5 (most danger). It accounts both for how
likely an animal is to be preyed upon, and how exposed it is when
sleeping. Notice the direction of the trend—you’d sleep poorly too
if you were worried about being eaten.
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Figure 1.6: Daily peak electricity de-
mand (stratified by month) in Raleigh,
NC from 2006–09. The dashed line
is the average peak demand for the
whole data set, and the blue dots are
the month-by-month means.

As you can see, the dot plot is useful for small data sets, when a
boxplot is no simpler than just plotting the cases group by group.
Strictly speaking, the points should all line up vertically with their
corresponding values of predation index, on the x-axis. But a
small amount of artificial horizontal jitter has been added to the
dots, which allows the eye to distinguish the individual cases more
easily.

Dot plots can also be effective for larger data sets. In Figure
1.6 we see four years of data on daily peak electricity demand for
the city of Raleigh, NC, stratified by month of the year. Both the
between-group and within-group variation show up clearly.

Group means and grand means

If you looked carefully, you may have noticed two extra features
of the dot plots in Figures 1.5 and 1.6. The square blue dots show
the group means for each category. The dotted green line shows the
grand mean for the entire data set, irrespective of group identity.
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Notice that, in plotting these means along with the data, we have
implicitly partitioned the variability:

Individual case = Group mean + Deviation of that case

Individual case = Grand mean + Deviation of group + Deviation of that case

This is just about the simplest statistical model we can fit, but
it’s still very powerful. We’ll revisit it soon.

More than one numerical variable

Our basic tool for visualizing a bivariate relationship between two
numerical variables is the scatter plot. Figure 1.7 shows a plot of
the daily returns for Microsoft stock versus Apple stock for every
trading day in 2015. Every dot corresponds to a day. The location
of the dot along the horizontal axis shows the Apple return, and
the location on the vertical axis shows the Microsoft return, for
that day. In this case, we can see that Microsoft and Apple stocks
tend to move up and down together. (Most stocks do.) We can also
see the speckling of outliers: those points that are visibly separate
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Figure 1.7: A scatter plot of the daily
returns for Microsoft stock, versus those
of Apple stock, for every trading day
in 2015. The daily return is the implied
interest rate from holding a stock from
the end of one trading day to the end
of the next. For example, Apple stock
closed at $105.95 per share on January
7th and at $110.02 on January 8th. Thus
the return for January 8th was

110.02 � 105.95
105.95

⇡ 0.038 ,

or about a 3.8% daily return. On the
same day, holders of Microsoft stock
enjoyed a 2.9% return.
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Figure 1.8: A pairs plot: a matrix
of four pairwise scatter plots for the
daily returns of Apple, Facebook,
Microsoft, and Amazon stocks in 2015.
The histograms along the diagonal
also label the rows and columns of the
matrix: e.g. the plot in the second row
has Facebook returns along the vertical
axis, while the plots in the second
column both have Facebook returns
along the horizontal axis.
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from the main cloud and that represent very good (or bad) days
for holders of these two stocks.

A simple way to visualize three or more numerical variables is
via a pairs plot, as in Figure 1.8. A pairs plot is a matrix of simpler
plots, each depicting a bivariate relationship. In Figure 1.8, we
see scatterplots for each pair of the daily returns for Microsoft,
Facebook, Apple, and Amazon stocks. The histograms on the
diagonal serve a dual purpose: (1) they show the variability of
each stock in isolation; and (2) they label the rows and columns, so
that you know which plots compare which variables.

Sample correlation. The sample correlation coefficient is a standard
measure of the strength of linear dependence between two vari-
ables in a sample. If we label the first variable as x1, . . . , xn and the
second as y1, . . . , yn, then the correlation coefficient is defined as

r =
Ân

i=1(xi � x̄)(yi � ȳ)

(n � 1)sxsy
, (1.2)

where sx and sy are the sample standard deviations of the X and
Y variables. At right you see scatter plots that depict examples
of strong positive (top) and weak negative (bottom) correlation.
Sample correlation is between 1 and �1, which are the extremes of
perfect positive and perfect negative correlation.

r = 0.9

r = -0.3

To summarize the correlation among a set of more than two
variables, we typically calculate a correlation matrix whose entry in
row i, column j is the correlation between variable i and variable j.
For the four stocks depicted in Figure 1.8, the correlation matrix is
below. Notice that the matrix is symmetric and has ones along the
diagonal (because a variable is perfectly correlated with itself):

Apple Microsoft Facebook Amazon

Apple 1.00 0.52 0.55 0.36

Microsoft 0.52 1.00 0.47 0.52

Facebook 0.55 0.47 1.00 0.50

Amazon 0.36 0.52 0.50 1.00

Caveats. A key fact to remember is that correlation measures the
strength of linear dependence. If two variables don’t fall roughly
along a straight line in a scatter plot, then correlation can be mis-
leading. For example, consider Figure 1.9: four different data sets,
four different stories about what’s going on. Yet all have the same
correlation: r = 0.816.
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Figure 1.9: above. Data taken from
F.J. Anscombe, “Graphs in Statistical
Analysis.” American Statistician, 27
(1973), pp. 17–21

Figure 1.10: left. Each panel shows
obvious dependence, but has a sample
correlation of r = 0.

Another important fact is that a sample correlation of 0 (“un-
correlated”) does not necessarily mean that two variables are un-
related. In fact, the correlation coefficient is so intimately tied up
with the assumption of a linear relationship that it breaks down
entirely when used to quantify the strength of nonlinear relation-
ships. In each of the three plots in Figure 1.10, for example, there
is an obvious (nonlinear) relationship between the two variables.
Yet the sample correlation coefficient for each of them turns out to
be exactly zero.

The lesson of these two plots is that you should always plot
your data. After all, a sample correlation coefficient is just one
number. It can only tell you so much about the relationship be-
tween two variables, and a scatterplot (or boxplot, or dot plot) is a
much, much richer summary of that relationship.
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Figure 1.11: Highway gas mileage
versus engine power for 387 vehicles in
five different classes.Further multivariate plots

In visualizing data, we are usually constrained by the limitations
of the two-dimensional page or screen. Nevertheless, there are
many cool techniques for showing more than two variables at
once, despite these limitations.

Lattice plots

Figure 1.11 shows three variables from a data set on 387 vehi-
cles: the highway gas mileage, the engine power (in horsepower),
and the class of the vehicle (minivan, sedan, sports car, SUV, or
wagon). This is done via a lattice plot, which displays the relation- Another term for a lattice plot is a

trellis plot.ship between two variables, stratified by the value of some third
variable. In this case the main relationship of interest is between
mileage and engine power, and the stratifying variable is vehicle
class. Notice how figure 1.11 repeats a scatterplot of MPG versus
horsepower five times: one plot for the vehicles in each class. To
facilitate comparisons across the strata, both the horizontal and
vertical axes are identical in each plot.

The figure suggests several facts:
• Nobody makes a powerful minivan.
• The overall MPG–horsepower trend is negative for all classes.
• The SUVs have the worst gas mileage overall, and in par-

ticular have worse mileage than the sports cars and wagons
despite having similar or lower power. (Compare the average
vertical location in the SUV panel versus the others).

• The MPG–horsepower relationship becomes nonlinear for
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Figure 1.12: Highway gas mileage
versus engine power for 387 vehicles in
five different classes.sedans at low horsepower, but perhaps not for wagons.

• As engine power increases, the dropoff in gas mileage looks
steeper for SUVs than for sports cars.

• For a fixed level of engine power, there is considerable vari-
ability in fuel economy. (Pick a fixed point on the horizontal
axis and focus on the cars near there. Now look at the corre-
sponding variability along the vertical axis for those cars.)

We can make a lattice of boxplots as well. For example, Figure
1.12 shows boxplots of engine power versus number of engine
cylinders, stratified by vehicle class. This suggests an explanation
for the fact that engine power is not a perfect predictor of fuel
economy: some cars get more power out of a smaller engine, and
are presumably more efficient as a result.

With a numerical variable. In Figure 1.11, the stratifying variable
is categorical. But we can also stratify a data set according to a
numerical variable, by discretizing that variable into bins—much
in the same way we do when we make a histogram. Figure 1.13
shows the latitude, longitude, and depth (in kilometers) beneath
the earth’s surface for the epicenter of every earthquake recorded
since 1963 near Fiji, an island in the South Pacific Ocean. The
“depth” variable has been discretized into nine equal-length bins.
The nine panels show the latitude and longitude of the quakes
whose depths fell in each interval, labeled at the top of each panel.

As depth increases (going left to right, top to bottom), a spatial
pattern emerges. The shallower earthquakes are at the intersection
of two major tectonic plates. The deeper quakes emanate from the
Tonga Trench—35,702 feet below the sea at its deepest point.9 9 And the final resting place of 3.9

kilograms of radioactive plutonium-238
from the ill-fated Apollo 13 mission.
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Figure 1.13: Earthquakes in Fiji: latitude
versus longitude for quakes within each
of nine different depth intervals. Here
the range of depths beneath the earth’s
surface (in kilometers) is labeled at the
top of each panel.


