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Probability models

Describing randomness

The basic idea of probability is that even random outcomes ex-
hibit structure and obey certain rules. In this chapter, we’ll learn
to use these rules to build probability models, which employ the
language of probability theory to provide mathematical descrip-
tions of random phenomena. Probability models can be used to
answer interesting questions about uncertain real-world systems.
For example:

• American Airlines oversells a flight from Dallas to New York,
issuing 140 tickets for 134 seats, because they expect at least
6 no-shows (i.e. passengers who bought a ticket but fail to
show up for the flight). How likely is it that the airline will
have to bump someone to the next flight?

• Arsenal scores 1.6 goals per game; Manchester United scores
1.3 goals per game. How likely it is that Arsenal beats Man U
when they play each other?

• Since 1900, stocks have returned about 6.5% per year on
average, net of inflation, but with a lot of variability around
this mean. How does this variability affect the likely growth
of your investment portfolio? How likely it is that you won’t
meet your retirement goals with your current investment
strategy?

Building a probability model involves two simple steps.
First, you identify the random variables of interest in your sys-

tem. A random variable is just a numerical summary of an uncer-

tain outcome. In the airline example, we could have any possible
combination of passengers fail to show up (seat 2C, 14G, etc). But
at the end of the day, if we want to know whether any passengers
are likely to get bumped to the next flight, all we care about is how
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many ticketed passengers are no-shows, not their specific identities
or seat numbers. So that’s our numerical summary, i.e. our ran-
dom variable: X = the number of no-shows. Or in the soccer game
between Arsenal and Man U, there are two obvious numerical
summaries: X1 = the number of goals scored by Arsenal, and X2 =
the number of goals scored by Man U.

Second, you provide a rule for calculating probabilities associ-
ated with each possible value of the random variable. This rule is
called a probability distribution. In the airline example, this distri-
bution might be described using a simple lookup table based on
historical data, e.g. 1% of all flights have 1 no-show, 1.2% have 2
no-shows, 1.7% have 3 no-shows, and so forth. In building a prob-
ability model, this second step is usually where the action is, and
it’s what we’ll discuss extensively in this chapter.

There are two common types of random variables, correspond-
ing to two common types of outcomes.

Discrete: the possible outcomes are whole numbers (1, 2, 3, etc.).
Both the number of airline no-shows and the score of a soccer
game are discrete random variables: you can’t have 2.4 no-
shows or 3.7 goals.

Continuous: the random variable could be anything within a con-
tinuous range of numbers, like the price of Apple stock to-
morrow, or the volume of subsurface oil reservoir.

Size of house-
hold, x

Probability,
P(X = x)

1 0.280
2 0.336
3 0.155
4 0.132
5 0.060
6 0.023
7 0.011
8 0.003

Table 17.1: Probability distribution
for household size in the U.S. in 2015.
There is a vanishingly small probability
for a household of size 9 or higher,
which is just rounded off to zero here.

An example. Here’s a simple example that will help you practice
your understanding of these concepts. Imagine that you’ve just
pulled up to your new house after a long cross-country drive,
only to discover that the movers have buggered off and left all
your furniture and boxes sitting in the front yard. What a mess!
(This actually happened to a friend of mine.) You decide to ask
your new neighbors for some help getting your stuff indoors.
Assuming your neighbors are the kindly type, how many pairs
of hands might come to your aid? Let’s use the letter X to denote
the (unknown) size of the household next door. The table at right
shows a probability distribution for X, taken from U.S. census data
in 2015; you might find this easier to visualize using the barplot in
Figure 17.1.

This probability distribution provides a complete representation
of your uncertainty in this situation. It has all the key features of
any probability distribution:
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Figure 17.1: Probability distribution for
the size of a random U.S. household in
2015. The elements of the sample space
(the numbers x = 1 through x = 8) are
shown along the horizontal axis. The
probabilities P(X = x) are shown on
the vertical axis.

1. There is a random variable, or a numerical summary of an
uncertain situation—here, the size of the household next
door (X).

2. There is a set of possible outcomes for the random variable—
here, the numbers 1 through 8.

3. Finally, there are probabilities for each possible outcome—
here provided via a simple look-up table. Notice that the
table uses big X to denote the random variable itself, and
little x to denote the possible outcomes.

Most probability distributions won’t be this simple, but they will
all require specifying these same basic elements.

Expected value: the mathematical definition

When you knock on your neighbors’ door in the hopes of getting
some help with your moving fiasco, how many people should you
“expect” to be living there?

The expected value of a probability distribution for a numerical
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random variable is just an average of the possible outcomes—but a
weighted average, rather than an ordinary average. This is a crucial
distinction. If you take the 8 possible outcomes in Figure 17.1 and
form their ordinary average, you get

Ordinary average =
1
8

· 1 +
1
8

· 2 + · · · + 1
8

· 7 +
1
8

· 8 = 4.5 .

Here, the weight on each possible outcome is 1/8 = 0.125, since
there are 8 numbers. This is not the expected value; it give each
possible outcome an equal weight, ignoring the fact that these
numbers have different probabilities.

To calculate an expected value, we instead form an average
using unequal weights, given by the probabilities of each outcome:

Expected value = (0.280) · 1 +(0.336) · 2 + · · ·+(0.011) · 7 +(0.003) · 8 ⇡ 2.5 .

The more likely numbers (e.g. 1 and 2) get higher weights than
1/8, while the unlikely numbers (e.g. 7 and 8) get lower weights.

This example conveys something important about expected
values. Even if the world is black and white, an expected value is
often grey. For example, the expected American household size is
2.5 people, a baseball player expects to get 0.25 hits per at bat, and
so forth.

As a general rule, suppose that the possible outcomes for a ran-
dom variable X are the numbers x1, . . . , xN . The formal definition
for the expected value of X is

E(X) =
N

Â
i=1

P(X = xi) · xi . (17.1)

This measures the “center” or mean of the probability distribu-
tion. Later, we’ll learn how this more formal definition of expected
value can be reconciled with the NP rule—that is, with our previ-
ous understanding of expected value as a risk/frequency calcula-
tion.

A related concept is the variance, which measures the dispersion
or spread of a probability distribution. It is the expected (squared)
deviation from the mean, or

var(X) = E
�
{X � E(X)}2� .

The standard deviation of a probability distribution is s = sd(X) =p
var(X). The standard deviation is more interpretable than the

variance, because it has the same units (dollars, miles, etc.) as the
random variable itself.
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Parametric models for discrete outcomes

Of the steps required to build a probability model, the requirement
that we provide a rule that can be used to calculate probabilities
for each possible outcome is usually the hardest one. In fact, for
most scenarios, if we had to build such a rule from scratch, we’d
be in for an awful lot of careful, tedious work. Imagine trying to
list, one by one, the probabilities for all possible outcomes of a
soccer game, or all possible outcomes for the performance of a
portfolio containing a mix of stocks and bonds over 40 years.

Thus instead of building probability distributions from scratch,
we will rely on a simplification called a parametric probability model.
A parametric probability model involves a probability distribu-
tion that can be completely described using a relatively small set
of numbers, far smaller than the sample space itself. These num-
bers are called the parameters of the distribution. There are lots of
commonly used parametric models—you might have heard of the
normal, binomial, Poisson, and so forth—that have been invented
for specific purposes. A large part of getting better at probability
modeling is to learn about these existing parametric models, and
to gain an appreciation for the typical kinds of real-world prob-
lems where each one is appropriate.

Recall our distinction earlier between discrete and continuous
random variables. A discrete random variable means that you can
count the possible outcome on your fingers and toes.1 Examples 1 Repeating when you get beyond 20 :-)

here include the number of no-shows on a flight, the number
of goals scored by Man U in a soccer game, or the number of
gamma rays emitted by a gram of radioactive uranium over the
next second. Continuous random variables, on the other hand, can
take on any value within a given range, like the price of a stock or
the speed of a tennis player’s serve.

We’ll start with the case of discrete random variables. Suppose
that we have a random variable X whose possible outcomes are x1,
x2, and so forth. You’ll recall that, to specify a probability model,
we must provide a rule that can be used to calculate P(X = xk)

for each possible outcome. When building parametric probability
models, this rule takes the form of a probability mass function, or
PMF:

P(X = xk) = f (xk | q) .

In words, this equation says that the probability that X takes on
the value xk is a function of xk. The probability mass function
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depends a number (or set of numbers) q, called the parameter(s) of
the model.

To specify a parametric model for a discrete random variable,
we must both provide both the probability mass function f and
the parameter q. This is best illustrated by example. We’ll consider
two: the binomial and Poisson distributions.

The binomial distribution

One of the simplest parametric models in all of probability theory
is called the binomial distribution, which generalizes the idea of
flipping a coin many times and counting the number of heads that
come up. The binomial distribution is a useful parametric model
for any situation with the following properties:

(1) We observe N different random events, each of which can be
either a “yes” or a “no.”

(2) The probability of any individual event being “yes” is equal to
P, a number between 0 and 1.

(3) Each event is independent of the others.

(4) The random variable X of interest is total number of “yes”
events. Thus the sample space is the set {0, 1, . . . , N � 1, N}.

The meaning of “yes” events and “no” events will be context-
dependent. For example, in the airline no-show example, we
might say that a “yes” event corresponds to a single passenger
failing to show up for his or her flight (which is probably not good
for the passenger, but definitely a success in the eyes of an airline
that’s overbooked a flight). Another example: in the PREDIMED
study of the Mediterranean diet, a “yes” event might correspond
to single study participant experiencing a heart attack.

If a random variable X satisfies the above four criteria, then it
follows a binomial distribution, and the PMF of X is

P(X = k) = f (k | N, P) =

✓
N
k

◆
Pk (1 � P)N�k , (17.2)

where N and P are the parameters of the model. The notation
(N

k ), which we read aloud as “N choose k,” is shorthand for the
following expression in terms of factorials:

✓
N
k

◆
=

N!
k!(N � k)!

.



probability models 187

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A binomial probability distribution: N = 140, p = 0.09
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Figure 17.2: A barplot showing the
probability distribution for the number
of no-shows on an overbooked airline
flight with 140 tickets sold, assuming a
no-show rate of 9% and that individual
no-shows are independent. The hori-
zontal axis has been truncated at k = 30
because the probability of more than 30
no-shows is vanishly small under the
binomial model.

This term, called a binomial coefficient, counts the number of
possible ways there are to achieve k “yes” events out of N total
events. (You’ll see how this is derived in a bit.)

Example: airline no-shows Let’s use the binomial distribution as
a probability model for our earlier example on airline no-shows.
The airline sold tickets 140 people, each of which will either show
up to fly that day (a “yes” event) or not (a “no” event). Let’s make
two simplifying assumptions: (1) that each person decides to show
up or not independently of the other people, and (2) that the prob-
ability of any individual person failing to show up for the flight
is 9%.2 These assumptions make it possible to apply the binomial 2 This is the industry average, quoted

in “Passenger-Based Predictive Mod-
eling of Airline No-show Rates,”
by Lawrence, Hong, and Cherrier
(SIGKDD 2003 August 24-27, 2003).

distribution. Thus the distribution for X, the number of ticketed
passengers who fail to show up for the flight, has PMF

P(X = k) =

✓
140

k

◆
(0.09)k (1 � 0.09)140�k .

This function of k, the number of no-shows, is plotted in Figure
17.2. The horizontal axis shows k; the vertical axis shows P(X = k)
under the binomial model with parameters N = 140, p = 0.09.

According to this model, the airline should expect to see around
E(X) = Np = 140 · 0.09 = 12.6 no shows, with a standard devia-
tion of sd(X) =

p
140 · 0.09 · (1 � 0.09) ⇡ 3.4. But remember that
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the question of interest is: what is the probability of fewer than 6
no-shows? If this happens, the airline will have to compensate the
passengers they bump to the next flight. We can calculate this as

P(X < 6) = P(X = 0) + P(X = 1) + · · · + P(X = 5) ⇡ 0.011 ,

i.e. by adding up the probabilities for 0 no-shows through 5 no-
shows. The airline should anticipate a 1.1% chance that more
people will show up than can fit on the plane.

The trade-offs of the binomial model. It’s worth noting that real air-
lines use much more complicated models than we’ve just built
here. These models might take into account, for example, the fact
that passengers on a late connecting flight will fail to show up
together non-independently, and that business travelers are more
likely no-shows than families on a vacation.

The binomial model—like all parametric probability models—
cannot incorporate these (very real) effects. It’s just an approxi-
mation. This approximation trades away flexibility for simplicity:
instead of having to specify the probability of all possible out-
comes between 0 and 140, we only have to specify two numbers:
N = 140 and p = 0.09, the parameters of the binomial distribution.
These parameters then determine the probabilities for all events in
the sample space.

In light of this trade-off, any attempt to draw conclusions from
a parametric probability model should also involve the answer to
two important questions. First, what unrealistic simplifications
have we made in building the model? Second, have these assump-
tions made our model too simple? This second answer will always
be context dependent, and it’s hard to provide general guidelines
about what “too simple” means. Often this boils down to the ques-
tion of what might go wrong if we use a simplified model, rather
than invest the extra work required to build a more complicated
model. This is similar to the trade-off that engineers face when
they build simplified physical models of something like a suspen-
sion bridge or a new fighter jet. Like many things in statistics and
probability modeling, this is a case where there is just no substi-
tute for experience and subject-area knowledge.

The expected value

Recall our definition of expected value. Suppose that the possible
outcomes for a random variable X are the numbers x1, . . . , xN .
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Back in Equation 17.1 on page 184, we learned that the formal
definition for the expected value of X is

E(X) =
N

Â
K=1

P(X = xi) · xi .

Thus the expected value is the probability-weighted average of
possible outcomes.

Now let’s imagine that X is a binomial random variable: X ⇠
Binomial(N, P). If we apply the formal definition of expected
value and churn through the math, we find that

E(X) =
k=N

Â
k=0

✓
N
k

◆
Pk (1 � P)N�k · k

= NP .

We’ve skipped a lot of algebra steps here, but the punchline is a
lot more important than the derivation: a random variable with a
binomial distribution has expected value E(X) = NP.

This is sometimes called the “NP rule” for expected value: the
expected number of events is the number of times an event has
to occur (N), times the probability that the event will occur each
time (P). The NP rule is a valid way of calculating an expected
value precisely for those random events that can be described by a
binomial distribution—that is, those events satisfying criteria (1)-
(3) on page 186. For random events that don’t meet these criteria,
you’ll need to use the formal definition from Equation 17.1 on
page 184.

Note: a similar calculation shows that a random variable with a
binomial distribution has standard deviation sd(X) =

p
NP(1 � P).

Advanced optional topic: a derivation of the binomial distribution

To motivate the idea of the binomial distribution, suppose we flip
a fair coin only twice.3 Let our random variable X be the number 3 By fair, we mean that coin is equally

likely to come up heads or tails when
flipped.

of times we see “heads” in two coin flips. Thus our sample space
for X has three possible outcomes—zero, one, or two. Since the
coin flips are independent, all four possible sequences for the
two flips (HH, HT, TH, TT) are equally likely, and the probability
distribution for X is given by the table below.

The logic of this simple two-flip case can be extended to the
general case of N flips: by accounting for every possible sequence
of heads and tails that could arise from N flips of a fair coin. Since
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xk P(X = k) Cases

0 0.25 0 heads (TT)
1 0.50 1 head (HT or TH)
2 0.25 2 heads (HH)

successive flips are independent, every sequence of heads and tails
has the same probability: 1/2N . Therefore,

P(X = k heads) =
Number of sequences with k heads
Total number of possible sequences

. (17.3)

There are 2N possible sequences, which gives us the denominator.
To compute the numerator, we must count the number of these
sequences where we see exactly k heads.

How many such sequences are there? To count them, imagine
distributing the k heads among the N flips, like putting k items in
N boxes, or handing out k cupcakes among N people who want
one. Clearly there are N people to which we can assign the first
cupcake. Once we’ve assigned the first, there are N � 1 people to
which we could assign the second cupcake. Then there are N � 2
choices for the third, and so forth for each successive cupcake.
Finally for the kth and final cupcake, there are N � k + 1 choices.
Hence we count

N ⇥ (N � 1) ⇥ (N � 2) ⇥ · · · ⇥ (N � k + 1) =
N!

(N � k)!

possible sequences, where N! is the factorial function. For exam-
ple, if m = 10 and k = 7, this gives 604,800 sequences.

But this is far too many sequences. We have violated an impor-
tant principle of counting here: don’t count the same sequence
more than once. The problem is that have actually counted all
the ordered sequences, even though we were trying to count un-
ordered sequences. For example, in the N = 10, k = 7 case, we
have counted “Heads on flips {1, 2, 3, 4, 5, 6, 7}” and “Heads on
flips {7, 6, 5, 4, 3, 2, 1}” as two different sequences. But they clearly
both correspond to the same sequence: hhhhhhhttt.

So how many times have we overcounted each unordered se-
quence in our tally of the ordered ones? The way to compute this
is to count the number of ways we could order k objects. Given a
group of k numbers which will be assigned to the “heads” cate-
gory, we could have chosen from k of the objects to be first in line,
from k � 1 of them to be second in line, from k � 2 of them to be
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third in line, and so forth. This means we have counted each un-
ordered sequence k! times. Thus the correct number of ways we
could choose k objects out of N possiblities is

N!
k!(N � k)!

=

✓
N
k

◆
.

For N = 10 and k = 7, this is 120 sequences—the right answer, and
a far cry from the 604,800 we counted above.

Putting all these pieces together, we find that the probability of
getting k heads in N flips of a fair coin is

P(k heads) =
N!

k!(N � k)!
1

2N =

✓
N
k

◆
1

2N . (17.4)

The general case. The above derivation assumes that “yes” (suc-
cess) and “no” (failure) events are equally likely. Let’s now relax
this assumption to see where the general definition of the binomial
distribution comes from, when the probability of any individual
success is not 0.5, but some rather some generic probability p.

Let’s take a sequence of N trials where we observed k successes.
Each success happens with probability p, and there are k of them.
Each failure happens with probability 1 � p, and there are m � k of
them. Because each trial is independent, we multiply all of these
probabilities together to get the probability of the whole sequence:
pk (1 � p)m�k. Moreover, our analysis above shows that there are
precisely (N

k ) such sequences (i.e. unique ways of getting exactly k
successes and N � k failures).

So if we let X denote the (random) number of successes in N
trials, then for any value of k from 0 to N,

P(X = k) =

✓
N
k

◆
pk (1 � p)N�k ,

which is the probability mass function given in Equation 17.2.

The Poisson distribution

Our second example of a parametric probability model is the
Poisson distribution, named after the French mathematician
Siméon Denis Poisson.4 The Poisson distribution is used to model 4 The French speakers among you, or at

least the fans of Disney movies, might
recognize the word poisson from a
different context. Run, Sebastian!

the number of times than some event occurs in a pre-specified
interval of time. For example:

https://en.wikipedia.org/wiki/Sim%C2%8Eon_Denis_Poisson
https://www.youtube.com/watch?v=EcyhVHrmlMU


192 data science

(1) How many goals will Arsenal score in their game against Man
U? (The event is a goal, and the interval is a 90-minute game.)

(2) How many couples will arrive for dinner at a hip new restau-
rant between 7 and 8 PM on a Friday night? (The event is the
arrival of a couple asking to sit at a table for two, and the in-
terval is one hour).

(3) How many irate customers will call the 1-800 number for
AT&T customer service in the next minute? (The event is a
phone call that must be answered by someone on staff, and the
interval is one minute.)

In each case, we identify the random variable X as the total
number of events that occur in the given interval. The Poisson dis-
tribution will provide an appropriate description for this random
variable if the following criteria are met:

(1) The events occur independently; seeing one event neither
increases nor decreases the probability that a subsequent event
will occur.

(2) Events occur the same average rate throughout the time inter-
val. That is, there is no specific sub-interval where events are
more likely to happen than in other sub-intervals. For exam-
ple, this would mean that if the probability of Arsenal scoring
a goal in a given 1-minute stretch of the game is 2%, then the
probability of a goal during any 1-minute stretch is 2%.

(3) The chance of an event occuring in some sub-interval is pro-
portional to the length of that sub-interval. For example, this
would mean that if the probability of Arsenal scoring a goal in
any given 1-minute stretch of the game is 2%, then the proba-
bility that they score during a 2-minute stretch is 4%.

A random variable X meeting these criteria is said to follow a
Poisson distribution. The sample space of a Poisson distribution
is the set of non-negative integers 0, 1, 2, etc. This is one important
way in which the Poisson differs from the binomial. A binomial
random variable cannot exceed N, the number of trials. But there
is no fixed upper bound to a Poisson random variable.

The probability mass function of Poisson distribution takes the
following form:

P(X = k) =
lk

k!
e�l ,
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with a single parameter l (called the rate). This parameter governs
the average number of events in the interval: E(X) = l. It also
governs the standard deviation: sd(X) =

p
l.

Example: modeling the score in a soccer game. Let’s return to our
soccer game example. Across all games in the 2015-16 English
Premiere League (widely considered to be the best professional
soccer league in the world), Arsenal scored 1.6 goals per game,
while Manchester United scored 1.3 goals per game. How likely
is it that Arsenal beats Man U? How likely is a scoreless draw
at 0-0? To answer these questions, let’s make some simplifying
assumptions.

(1) Let XA be the number of goals scored in a game by Arsenal.
We will assume that XA can be a described by a Poisson distri-
bution with rate parameter 1.6: that is, XA ⇠ Poisson(l = 1.6).

(2) Let XM be the number of goals scored in a game by Manch-
ester United. We will assume that XM ⇠ Poisson(l = 1.3).

(3) Finally, we will assume that XA and XM are independent of
one another.

Our model sets the rate parameters for each team’s Poisson distri-
bution to match their average scoring rates across the season. The
corresponding PMFs are shown at right.
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Under these simplifying assumptions, we can calculate the
probability of any possible score—for example, Arsenal 2–0
Manchester United. Because we have assumed that XA and XM
are independent, we can multiply together the two probabilities
we get from each random variable’s Poisson distribution:

P(XA = 2, XM = 0) =

✓
1.62

2!
e�1.6

◆
·
✓

1.30

0!
e�1.3

◆
⇡ 0.07 .

Figure 17.3 shows a similar calculation for all scores ranging
from 0–0 to 5–5 (according to the model, the chance of a score
larger than this is only 0.6%). By summing up the probabilities for
the various score combinations, we find that:

• Arsenal wins with probability 44%.

• Man U wins with probability 31%.

• The game ends in a draw with probability 25%. In particular,
a scintillating 0–0 draw happens with probability 5.5%.
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Figure 17.3: A matrix of probabilities
associated with various match scores
under the independent Poisson model
of an Arsenal vs. Man U match, based
on scoring statistics from 2015-16
Premiere League season. Each entry
in the matrix is the probability with
the corresponding score (darker grey =
higher probability). The cells outlined
in blue correspond to an Arsenal win,
which happens with probability 44%
(versus 25% for a draw and 31% for a
Manchester United win.

The normal distribution

This chapter’s third and final example of a parametric probability
model is the normal distribution—the most famous and widely
used distribution in the world.

Some history

Historically, the normal distribution arose an an approximation
to the binomial distribution. In 1711, a Frenchman named Abra-
ham de Moivre published a book called The Doctrine of Chances.
The book was reportedly was prized by gamblers of the day for its
many useful calculations that arose in dice and card games. In the
course of writing about these games, de Moivre found it necessary
to perform computations using the binomial distribution for very
large values of N, the number of independent trial in a binomial
distribution. (Imagine flipping a large number of coins and mak-
ing bets on the outcomes, and you too will see the necessity of this
seemingly esoteric piece of mathematics.)

Figure 17.4: The title page of de
Moivre’s “The Doctrine of Chances”
(1711), from an early edition owned by
the University of California, Berkeley.
One interesting thing about the history
of statistics is the extent to which beau-
tiful mathematical results came out of
the study of seemingly trivial gambling
and parlor games.

As you recall the previous section, these calculations require
computing binomial coefficients (N

k ) for very large values of N.
But because these computations involve the factorial function,
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Figure 17.5: The binomial distribution
for p = 0.5 and an increasingly large
number of trials, together with de
Moivre’s normal approximation.

they were far too time-consuming without modern computers,
which de Moivre didn’t have. So he derived an approximation
based on the number e ⇡ 2.7183, the base of the natural loga-
rithm. He discovered that, if a random variable X has a binomial
distribution with parameters N and p, which we recall is written
X ⇠ Binomial(N, p), then the approximate probability that X = k
is

P(X = k) ⇡ 1p
2ps2

e� (k�µ)2

2s2 , (17.5)

where µ = mp and s2 = Np(1 � p) are the expected value and
variance, respectively, of the binomial distribution. When consid-
ered as a function k, this results in the familiar bell-shaped curve
plotted in Figure 17.5—the famous normal distribution.

We can usually (though not always) avoid working with this
expression directly, since every piece of statistical software out
there can compute probabilities under the normal distribution.
The important thing to notice is how the binomial samples in
Figure 17.5 start to look more normal as the number of trials N
gets progressively larger: first 5, then 10, 25, and finally 100. The
histograms show the binomial distribution itself, while the black
curves show de Moivre’s approximation. Clearly he was on to
something. This famous result of de Moivre’s is usually thought of
as the first central limit theorem in the history of statistics, where the
word “central” should be understood to mean “fundamental.”

The normal distribution: a modern understanding

The other term for the normal distribution is the Gaussian distri-
bution, named after the German mathematician Carl Gauss. This
raises a puzzling question. If de Moivre invented the normal ap-
proximation to the binomial distribution in 1711, and Gauss (1777–
1855) did his work on statistics almost a century after de Moivre,
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Three members of the normal family
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Figure 17.6: Three members of the
normal family: N(0, 12), N(0, 42), and
N(3, 12). See if you can identify which
is which using the guideline that 95%
of the probability will be within two
standard deviations s of the mean.
Remember, the second parameter is the
variance s2, not the standard deviation.
So s2 = 42 means a variance of 16 and a
standard deviation of 4.

why then is the normal distribution also named after Gauss and
not de Moivre? This quirk of eponymy arises because de Moivre
only viewed his approximation as a narrow mathematical tool
for performing calculations using the binomial distribution. He
gave no indication that he saw it as a more widely applicable
probability distribution for describing random phenomena. But
Gauss—together with another mathematician around the same
time, named Laplace—did see this, and much more.

If we want to use the normal distribution to describe our un-
certainty about some random variable X, we write X ⇠ N(µ, s2).
The numbers µ and s2 are parameters of the distribution. The first
parameter, µ, describes where X tends to be centered; it also hap-
pens to be the expected value of the random variable. The second
parameter, s2, describes how spread out X tends to be around its
expected value; it also happens to be the variance of the random
variable. Together, µ and s2 completely describe the distribution,
and therefore completely characterize our uncertainty about X.

The normal distribution is described mathematically by its
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probability density function, or PDF:

p(x) =
1p

2ps2
exp

✓
� (x � µ)2

2s2

◆
. (17.6)

If you plot this as a function of x, you get the famous bell curve
(Figure 17.6). How can you interpret a “density function” like this
one? If you the take the area under this curve between two values
z1 and z2, you will get the probability that the random variable
X will end up falling between z1 and z2 (see Figure 17.7). The
height of the curve itself is a little more difficult to interpret, and
we won’t worry about doing so—just focus on the “area under the
curve” interpretation.

−3 −2 −1 0 1 2 3

●

●

Lower Tail Area = 0.1
Upper Tail Area = 0.05

Figure 17.7: Examples of upper and
lower tail areas. The lower tail area of
0.1 is at z = �1.28. The upper tail area
of 0.05 is at z = 1.64

Here are two useful facts about normal random variables
areas—or more specifically, about the central areas under the
curve, between the tails. If X ⇠ N(µ, s2), then the chance that
X will be within 1s of its mean is about 68%, and the chance that
it will be within 2s of its mean is about 95%. Said in equations:

P(µ � 1s < X < µ + 1s) ⇡ 0.68

P(µ � 2s < X < µ + 2s) ⇡ 0.95 .

Actually, it’s more like 1.96s rather than 2s for the second part. So
if your problem requires a level of precision to an order of 0.04s

or less, then don’t use this rule of thumb, and instead go with the
true multiple of 1.96.

When is the normal distribution an appropriate model?

The normal distribution is now used as a probability model in sit-
uations far more diverse than de Moivre, Gauss, or Laplace ever
would have envisioned. But it still bears the unmistakeable traces
of its genesis as a large-sample approximation to the binomial dis-
tribution. That is, it tends to work best for describing situations
where each normally distributed random variable can be thought
of as the sum of many tiny, independent effects of about the same
size, some positive and some negative. In cases where this descrip-
tion doesn’t apply, the normal distribution may be a poor model
of reality. Said another way: the normal distribution describes an
aggregation of nudges: some up, some down, but all pretty small.

As a result, the normal distribution shares the property of the
binomial distribution that huge deviations from the mean are
unlikely. It has, in statistical parlance, “thin tails.” Using our rule
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with best−fitting normal approximation
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S&P 500 monthly returns (1988−2015) 
with best−fitting normal approximation
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Figure 17.8: Daily stock returns for
Microsoft (left) and the S&P 500 (right),
together with the best-fitting normal
approximations. The approximation
on the right is not bad, while the
approximation on the left drastically
underestimates the probability of
extreme results.

of thumb above, a normally distributed random variable has only
a 5% chance of being more than two standard deviations away
from the mean. It also has less than a 0.3% chance of being more
than three standard deviations away from the mean. Large outliers
are vanishingly rare.

For example, in the histogram of daily returns for Microsoft
stock in the left panel Figure 17.8, notice the huge outliers in the
lower tail. These returns would be wildly implausible if the re-
turns really followed a normal distribution. A daily return tends
to be dominated by one or two major pieces of information. It
does not resemble an aggregation of many independent up-or-
down nudges, and so from first principles alone, we should prob-
ably expect the normal distribution to provide a poor fit. As we
would expect, the best-fitting normal approximation (i.e. the one
that matches the sample mean and standard deviation of the data)
does not fit especially well.

The example of Microsoft stock recalls the earlier discussion on
the trustworthiness of the simplifying assumptions that must go
into building a probability model. To recap:

Have these assumptions made our model too simple? This . . . an-
swer will always be context dependent, and it’s hard to pro-
vide general guidelines about what “too simple” means.
Often this boils down to the questin of what might go wrong
if we use a simplified model, rather than invest the extra work
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required to build a more complicated model.

What might go wrong if we use a normal probability model for
Microsoft returns? In light of what we’ve seen here, the answer
is: we might be very unpleasantly surprised by monetary losses
that are far more extreme than envisioned under our model. This
sounds very bad, and is probably a sufficient reason not to use
the normal model in the first place. To make this precise, observe
that the 2 most extreme daily returns for Microsoft stock were both
6 standard deviations below the mean. According to the normal
model, we should only expect to see such an extreme result once
every billion trading days, since

P(X < µ � 6s) ⇡ 10�9 .

This is a wildly overtoptimistic assessment, given that we actually
saw two such results in the 503 trading days from 2014-15.

On the other hand, the normal distribution works a lot better
for stock indices than it does for individual stocks, especially if
we aggregate those returns over a month rather than only a day,
so that the daily swings tend to average out a bit more. Take, for
example, the best-fitting normal approximation for the monthly
returns of the S&P 500 stock index from 1988 to 2015, in the right
panel of Figure 17.8. Here the best-fitting normal distribution,
though imperfect, looks a lot better than the corresponding fit for
an individual stock on the left. Here, the most extreme monthly
return was 4 standard deviations below the mean (which hap-
pened in October 2008, during the financial crisis of that year that
augured the Great Recession). According to the normal model,
we would expect such an extreme event to happen with about 2%
probability in any given 27-year stretch. Thus our model looks a
tad optimistic, but not wildly so.

Example: modeling a retirement portfolio

From 1900–2015, the average annual return5 of the S&P 500 stock 5 Real returns net of infation and
dividends. Remember that a return is
simply the implied interest rate from
holding an asset for a specified period.
If you buy a stock at $100 and sell a
year later at $110, then your return
is (110 � 100)/100 = 0.1, or 10%. If
inflation over that year was 3%, then
your real return was 7%.

index is 6.5%, with a standard deviation of 19.6%. Let’s use these
facts to build a probability model for the future 40-year per-
formance of a $10,000 investment in a diversified portfolio of
U.S. stocks (i.e. an index fund). While there’s no guarantee that
past returns are a reliable guide to future returns, they’re the only
data we have. After all, as Mark Twain is reputed to have said,
“History doesn’t repeat itself, but it does rhyme.”
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Figure 17.9: Left panel: 1000 simulated
trajectories for the growth of a $10,000
stock investment over 40 years, assum-
ing that year stock returns are normally
distributed with a mean of 6.5% and
a standard deviation of 19.6%. Two
individual trajectories (leading to very
different outcomes) are highlighted in
blue; the average trajectory is shown in
red. The right panel shows the simu-
lated probability distribution for W40,
the final value of the portfolio after 40
years of random returns.

Let’s say that your initial investment is W0 = $10, 000, and that
Xt is the return of your portfolio in year t expressed as a decimal
fraction (e.g. a 10% return in year 1 would mean that Xt = 0.1).
Here t will run from 1 to 40, since we want to track your portfolio
over 40 years. If we knew the returns X1, X2, . . . , X40 all the way
into the future, we could calculate your terminal wealth as

W40 = W0 ·
40

’
t=1

(1 + Xt) ,

by simply compounding the interest year after year.6 This formula 6 Here the symbol ’ means we take the
running product of all the terms, from
t = 1 to t = 40, just like S means we
take a running sum.

follows from the fact that Wt+1, your wealth in year t, is given by
the simple interest formula: Wt+1 = Wt · (1 + Xt). Accumulating
returns year after year then gives us the above formula.

Of course, we don’t know these interest rates. But we do have a
probability model for them, whose parameters have been chosen
to match the historical record: Xt ⇠ N(µ = 0.065, s2 = 0.1962).
Thus to estimate the probability distribution of the random vari-
able W40, your terminal wealth after 40 years, we will use a Monte
Carlo simulation, in which we repeat the following steps many
thousands of times:

(1) Simulate random returns from the normal probability model:
Xt ⇠ N(0.065, 0.1962) for t = 1, . . . , 40.

(2) Starting with year t = 1 and ending with year t = 40,
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chain these simulated interest rates together using the simple-
interest formula

Wt+1 = Wt · (1 + Xt)

to form a single simulated trajectory W1, W2, . . . , W40 of wealth.

As a byproduct of this, we get a simulated probability distribution
of Wt for all values of t from 1 up to 40.

Figure 17.9 shows 1000 trajectories simulated according to this
algorithm, along with the histogram of the 1000 different values of
W40, your wealth in 40 years. There are several interesting things
to point out about the result:

(1) The average trajectory in Figure 17.9 results in a final value of
W40 ⇡ $135,000 from your initial $10,000 investment.7

7 Remember that our assumed rates of
return are adjusted for inflation, so this
corresponds to the purchasing power
of $135,000 in today’s money. The
actual dollar value of this portfolio, as
measured in the currency of the future,
would be a good deal higher.

(2) But there is tremendous variability about this average trajec-
tory, both over time for a single trajectory, and across all tra-
jectories. To illustrate this point, two simulated trajectories are
shown in blue in Figure 17.9: one resulting in a final portfolio
of about $250,000, and another resulting in less than $50,000.

(3) The simulated probability distribution of final wealth (right
panel of Figure 17.9) was constructed using nothing but nor-
mally distributed random variables as inputs. But this dis-
tribution is itself highly non-normal.8 This provides a good 8 In particular it has a long right tail,

reflecting the small probability of
explosive growth in your investment.

example of using Monte Carlo simulation to simulate a com-
plex probability distribution by breaking down into a function
of many smaller, simpler parts (in this case, the yearly returns).

(4) The estimated probability that your $10,000 investment will
have lost money (net of inflation) after 10 years is about 19%;
after 20 years, about 13%; after 40 years, about 6%.

(5) The estimated probability that your investment will grow to $1
million or more after 40 years is about 1%.

The moral of the story is that the stock market is probably a
good way to get rich over time. But there’s a nonzero chance of
losing money—and the riches come only in the long run, and with
a lot of uncertainty about how things will unfold along the way.

Postscript

We’ve now seen three examples of parametric probability mod-
els: a binomial model for airline no-shows, a Poisson model for
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scoring in a soccer game, and a normal model for annual returns
of the stock market. In each case, we chose the parameters of the
probability model from real-world data, using simple and obvious
criteria (e.g. the overall no-show rate for commercial flights, or the
mean return of stocks over the last century).9 In essence, we per- 9 Technically what we did here was

called moment matching, wherein we
match sample moments (e.g. mean,
variance) of the data to the corre-
sponding moments of the probability
distribution.

formed a naïve form of statistical inference for the parameters of
our probability models. This intersection where probability mod-
eling meets data is an exciting place where the big themes of the
book all come together.


