
16
Building predictive models

Building predictive models

Suppose you have a house in Saratoga, NY that you’re about to
put up for sale. It’s a 1900 square-foot house on a 0.7-acre lot.
It has 3 bedrooms, 2.5 bathrooms,1 1 fireplace, gas heating, and 1 A half-bathroom has a toilet but no

bath or shower.central air conditioning. The house was built 16 years ago. How
much would you expect it to sell for?

Although we’ve been focusing on only a few variables of in-
terest so far, our house-price data set actually has information on
all these variables, and a few more besides. A great way to assess
the value of the house is to use the available data to fit a multi-
ple regression model for its price, given its features. We can then
use this model to make a best guess for the price of a house with
some particular combination of features—and, optionally, to form
a prediction interval that quantifies the uncertainty of our guess.

We refer to this as the process of building a predictive model.
Although we will still use multiple regression, the goal here is
slightly different than in the previous examples we’ve look at
through the lens of multiple regression. Here, we don’t care so
much about isolating and interpreting one particular partial rela-
tionship (like that between fireplaces and price). Instead, we just
want the most accurate predictions possible. Interpreting coeffi-
cients and worrying about confounders is of secondary concern.

The key principle in building predictive models is Occam’s razor,
which is the broader philosophical idea that models should be
only as complex as they need to be in order to explain reality
well. The principle is named after a medieval English theologian
called Willam of Occam. Since he wrote in Latin, he put it like this:
Frustra fit per plura quod potest fieri per pauciora (“It is futile to do
with more things that which can be done with fewer.”) A more
modern formulation of Occam’s razor might be the KISS rule:
keep it simple, stupid.

In regression modeling, this principle is especially relevant for

https://en.wikipedia.org/wiki/KISS_principle

170 data science

variable selection—that is, deciding which possible predictor vari-
ables to add to a model, and which to leave out. In this context,
Occam’s razor is about finding the right set of variables to include
so that we fit the data, without overfitting the data. Another way
of saying this is that we want to find the patterns in the data, with-
out memorizing the noise.

In this chapter, we’ll consider two main questions:

(1) How can we measure the predictive power of a model?

(2) How can we find a model with good predictive power?

Measuring generalization error

To understand how we measure the predictive power of a re-
gression model, we first need a bit of notation. Specifically, let’s
say that we have estimated a multiple regression model with
p predictors (x1, x2, . . . , xp) to some data, giving us coefficients
(b̂0, b̂1, . . . , b̂p). Now we encounter a new case, not in our original
data set. We’ll let x? = (x?

1 , x?
2 , . . . , x?

p) be the predictor variables
for this new case, and y? denote the corresponding response. We
will use the fitted regression model, together with x?, to make a
prediction for y?:

ŷ? = b̂0 +
p

Â
j=1

b̂ jx?
j .

Our goal is to make the generalization error—that is, the difference
between y? and ŷ?—as small as possible, on average.

A natural way to measure the generalization error of a regres-
sion model is using a quantity called the mean-squared predictive
error, or MSPE. The mean-squared predictive error is a property
of a fitted model, not an individual data point. It summarizes the
magnitude of the errors we typically make when we use the model
to make predictions ŷ? on new data:

MSPE = Average value of (y? � ŷ?)2 when sampling new data points .

Here a “new” data point means one that hasn’t been used to fit
the model. You’ll notice that, in calculating MSPE, we square the
prediction error y? � ŷ? so that both positive and negative errors
count equally.

Low mean-squared predictive error means that y? � ŷ? tends to
be close to zero when we sample new data points. This gives us a

building predictive models 171

simple principle for building a predictive model: find the model
(i.e. the set of variables to include) with the lowest mean-squared
predictive error.

Estimating the the mean-squared predictive error

Conceptually, the simplest way to estimate the mean-squared
predictive error of a regression model is to actually collect new
data and calculate the average predictive error made by our model.
Specifically, suppose that, after having fit our model in the first
place, we go out there and collect n? brand new data points, with
responses y?

i and predictors (x?
i1, . . . , x?

ip). We can then estimate the
mean-squared predictive error of our model in two simple steps:

1. Form the prediction for each new data point:

ŷi
? = b̂0 +

p

Â
j=1

b̂ jx?
ij .

2. Calculate the average squared error of your predictions:

dMSPEout =
1

n?

n?

Â
i=1

(y?
i � ŷ?

i)
2 .

Notice that we put a hat on MSPE, because the expression
on the right-hand side is merely an estimate of the true mean-
squared predictive error, calculated using a specific sample
of new data points. (Calculating the true MSPE would re-
quire us, in principle, to average over all possible samples
of new data points, which is obviously impractical.) We also
use the subscript “out” to indicate that it is an out-of-sample
measure—that is, calculated on new data, that falls outside of
our original sample.

Conventionally, we report the square root of dMSPEout (which is
called root mean-squared predictive error, or RMSPE), because this
has the same units as the original y variable. You can think of the
RMSPE as the standard deviation of future forecasting errors made
by your model.

Assuming your new sample size n? isn’t too small, these two
steps are a nearly foolproof way to estimate the mean-squared pre-
dictive error of your model. The drawback, however, is obvious:
you need a brand new data set, above and beyond the original

172 data science

data set that you used to fit the model in the first place. This new
data set might be expensive or impractical to collect.

Thus we’re usually left in the position of needing to estimate
the mean-squared predictive error of a model, without having
access to a “new” data set. For this reason, the usual practice is
make a train/test split of your data: that is, to randomly split your
original data set into two subsets, called the training and testing
sets.

• The training set is used only to fit (“train”) the model—that
is, to estimate the coefficients (b̂0, b̂1, . . . , b̂p).

• The testing set is used only to estimate the mean-squared
predictive error of the model. It is not used at all to fit the
model. For this reason, the testing set is sometimes referred
to as the “hold-out set,” since it is held out of the model-
fitting process.

From this description, it should be clear that the training set plays
the role of the “old” data, while the testing set plays the role of the
“new” data.

This gives us a simple three-step procedure for choosing be-
tween several candidate models (i.e. different possible sets of vari-
ables to include).

(1) Split your data into training and testing sets.

(2) For each candidate model:

A. Fit the model using the training set.

B. Calculate dMSPEout for that model using the testing set.

(3) Choose the model with the lowest value of dMSPEout.

Choosing the training and testing sets. A key principle here is that
you must randomly split your data into a training set and testing
set. Splitting your data nonrandomly—for example, taking the
first 800 rows of your data as a training set, and the last 200 rows
as a testing set—may mean that your training and testing sets are
systematically different from one another. If this happens, your
estimate of the mean-squared prediction error can be way off.

How much of the data should you reserve for the testing set?
There are no hard-and-fast rules here. A common rule of thumb
is to use about 75% of the data to train the model, and 25% to

building predictive models 173

test it. Thus, for example, if you had 100 data points, you would
randomly sample 75 of them to use for model training, and the
remaining 25 to estimate the mean-squared predictive error. But
other ratios (like 50% training, or 90% training) are common, too.

My general guideline is that the more data I have, the larger the
fraction of that data I will use for training the predictive model.
Thus with only 100 data points, I might use a 75/25 split between
training and testing; but with 10,000 data points, I might use more
like a 90/10 split between training and testing. That’s because es-
timating the model itself is generally harder than estimating the
mean-squared predictive error.2 Therefore, as more data accumu- 2 By “harder” here, I mean “subject

to more sources of statistical error,”
as opposed to computationally more
difficult.

lates, I like to preferentially allocate more of that data towards the
intrinsically harder task of model estimation, rather than MSPE
estimation.

Averaging over different test sets. It’s a good idea to average your
estimate of the mean-squared predictive error over several differ-
ent train/test splits of the data set. This reduces the dependence
of dMSPEout on the particular random split into training and test-
ing sets that you happened to choose. One simple way to do this
is average your estimate of MSPE over many different random
splits of the data set into training and testing sets. Somewhere
between 5 and 100 splits is typical, depending on the computa-
tional resources available (more is better, to reduce Monte Carlo
variability).

Another classic way to estimate MSPE it is to divide your data
set into K non-overlapping chunks, called folds. You then average
your estimate of MPSE over K different testing sets, one corre-
sponding to each fold of the data. This technique is called cross
validation. A typical choice of K is five, which gives us five-fold
cross validation. So when testing on the first fold, you use folds
2-5 to train the model; when testing on fold 2, you use folds 1 and
3-5 to train the model; and so forth.

Can we use the original data to estimate the MSPE?

A reasonable question is: why do even we need a new data set to
estimate the mean-squared prediction error? After all, our fitted
model has residuals, ei = yi � ŷi, which tell us how much our
model has “missed” each data point in our sample. Why can’t
we just use the residual variance, s2

e , to estimate the MSPE? This
approach sounds great on the surface, in that we’d expect the past

https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://en.wikipedia.org/wiki/Cross-validation_(statistics)

174 data science

errors to provide a good guide to the likely magnitude of future
errors. Thus you might be tempted to use the in-sample estimate of
MSPE, denoted

dMSPEin = s2
e =

1
n � p

n

Â
i=1

(yi � ŷi)
2 ,

where we recall that p is the number of parameters in the model.
Using dMSPEin certainly removes the need to collect a new data

set. This turns out, however, to be a false economy: dMSPEin is
usually too optimistic as an estimate of a model’s generalization
error. Practically speaking, this means the following. When we
use dMSPEin to quantify the in-sample error of a model, and then
we actually go out and take new data to calculate the out-of-sample
generalization error dMSPEout, we tend to discover that the out-
of-sample error is larger—sometimes much larger! This is called
overfitting, and it is especially likely to happen when the size
of the data set is small, or when the model we’re fitting is very
complex (i.e. has lots of parameters).

An example

Let’s see these ideas in practice, by comparing three predictive
models for house prices in Saratoga, New York. Our models will
draw from the following set of variables:

• lot size, in acres
• age of house, in years
• living area of house, in square feet
• percentage of residents in neighborhood with college degree
• number of bedrooms
• number of bathrooms
• number of total rooms
• number of fireplaces
• heating system type (hot air, hot water, electric)
• fuel system type (gas, fuel oil, electric)
• central air conditioning (yes or no)

We’ll consider three possible models for price constructed from
these 11 predictors.

Small model: price versus lot size, bedrooms, and bathrooms (4
total parameters, including the intercept).

Medium model: price versus all variables above, main effects only
(14 total parameters, including the dummy variables).

building predictive models 175

In-sample RMSPE Out-of-sample RMSPE Difference
Small model: underfit $76,144 $76,229 $85
Medium model: good fit $65,315 $65,719 $403
Big model: overfit $61,817 $71,426 $9,609

Table 16.1: In-sample versus out-of-
sample estimates of the root mean-
squared predictive error for three
models of house prices in Saratoga,
NY. The “difference” column shows the
difference between the in-sample and
out-of-sample estimates. The big model
has a very large difference (over $9,000),
indicating that the in-sample estimate is
way too optimistic, and that the model
is probably overfit to the data.

Big model: price versus all variables listed above, together with
all pairwise interactions between these variables (90 total
parameters, include dummy variables and interactions).

Table 16.1 shows both dMSPEin and dMSPEout for these three
models. To calculate dMSPEout, we used 80% of the data as a train-
ing set, and the remaining 20% as a test set, and we averaged
over 100 different random train/test splits of the data. The final
column, labeled “difference,” shows the difference between the
in-sample and out-of-sample estimates of prediction error.

There are a few observations to take away from Table 16.1. The
first is that the big model (with all the main effects and interac-
tions) has the lowest in-sample error. With a residual standard
deviation of $61,817, it seems nearly $3,500 more accurate than the
medium model, which is next best. This is a special case of a very
general phenomenon: a more complex model will always fit the
data better, because it has more degrees of freedom to play with.

However, the out-of-sample measure of predictive error tells
a different story. Here, the medium-sized model is clearly the
winner. Its predictions on new data are off by about $65,719, on
average, which is nearly $6,000 better than the big model.

Finally, notice how severely degraded the predictions of the
big model become when moving from old (in-sample) data to
new (out-of-sample) data: about $9,600 worse, on average. This
kind of degradation is a telltale sign of overfitting. The medium
model suffers only a mild degradation in performance on new
data, while the small model suffers hardly any degradation at all—
although it’s still not competitive on the out-of-sample measure,
because it wasn’t that good to begin with. This is also a special
case of a more general phenomenon: some degradation in pre-
dictive performance on out-of-sample versus in-sample data is
inevitable, but simpler models tend to degrade a lot less.

Figure 16.1 demonstrates this point visually. Starting from a
very simple model of price (using only lot size as a predictor),
we’ve added one variable or interaction at a time3 from the list on 3 To be specific here, at each stage we

added the single variable or interac-
tion that most improved the fit of the
model. See the next section on stepwise
selection.

176 data science

0 5 10 15 20 25 30 35

60
00

0
62

00
0

64
00

0
66

00
0

68
00

0
70

00
0

The in−sample estimate of prediction error is too optimistic

Saratoga house−price data
Number of variables/interactions in model

R
oo

t m
ea

n−
sq

ua
re

d
pr

ed
ic

tio
n

er
ro

r

In−sample error
Out−of−sample error

Figure 16.1: Starting from a small
pricing model with just lot size as a
predictor, we’ve added one variable
or interaction at a time from the list
on page 174. The red line shows the
in-sample estimate of error, while the
black line shows the out-of-sample esti-
mate. After we add about 15 variables
and interactions, the out-of-sample
error starts to creep back up. Clearly
the in-sample estimate is too optimistic,
especially as the model gets more
complex.

page 174. For each new variable or interaction, we recalculated
both the in-sample (dMSPEin) and out-of-sample (dMSPEout) esti-
mates of the generalization error. As we add variables, the out-of-
sample error initially gets smaller, reflecting a better fitting model
that still generalizes well to new data. But after 15 or 20 variables,
eventually the out-of-sample error starts creeping back up, due to
overfitting. The in-sample estimate of error, however, keeps going
down, falling even further out of line with the real out-of-sample
error as we add more variables to the model.

In summary, you should remember the basic mantra of predic-
tive model building: out-of-sample error is larger than in-sample
error, especially for bigger models. If you care about minimizing
out-of-sample error, you should always use an out-of-sample esti-
mate of a model’s MSPE, to make sure that you’re not overfitting
the original data. Our goal here should be obvious: to find the
“turning point” in Figure 16.1, and to stop adding variables before
we start overfitting.

building predictive models 177

Iterative model building via stepwise selection

Now that we know how to measure generalization error of a
model, we’re ready to introduce the overall steps in the process
of building and using a predictive model from a set of candidate
variables x1, x2, etc. We sometimes use the term scope to refer to
this set of candidate variables.

The seemingly obvious approach is to fit all possible models
under consideration to a training set, and to measure the gener-
alization error of each one on a testing set. If you have only a few
variables, this will work fine. For example, with only 2 variables,
there are only 22 = 4 possible models to consider: the first variable
in, the second variable in, both variables in, or both variables out.
You can fit and test those four models in no time. This is called
exhaustive enumeration.

However, if there are lots of variables, exhaustive enumera-
tion of all the models becomes a lot harder to do, for the simple
fact that it’s too exhausting—there are too many models to con-
sider. For example, suppose we have 10 possible variables, each
of which we could put in or leave out of the model. Then there
are 210 = 1024 possible models to consider, since each variable
could be in or out in any combination. That’s painful enough. But
if there are 100 possible variables, there are 2100 possible models
to consider. That’s 1 nonillion models—about 1030, or a thousand
billion billion billion. This number is larger than the number of
atoms in a human body.

You will quite obviously never be able to fit all these countless
billions of models, much less compare their generalization errors
on a testing set, even with the most powerful computer on earth.
Moreover, that’s for just 100 candidate variables with main effects
only. Ideally, we’d like the capacity to build a model using many
more candidate variables than that, or to include the possibility of
interactions among the variables.

Thus a more practical approach to model-building is iterative:
that is, to start somewhere reasonable, and to make small changes
to the model, one variable at a time. Model-building in this itera-
tive way is really a three-step process:

(1) Choose a baseline model, consisting of initial set of predictor
variables to include in the model, including appropriate trans-
formations, polynomial terms and interactions. Exploratory

178 data science

data analysis (i.e. plotting your data) will generally help you
get started here, in that it will reveal obvious relationships in
the data. Then fit the model for y versus these initial predic-
tors.

(2) Check the model. If necessary, change what variables are in-
cluded, what transformations are used, etc.:

(a) Are the assumptions of the model met? This is generally
addressed using residual plots, of the kind shown in Fig-
ures 14.7 and ??. This allows you to assess whether the
response varies linearly with the predictors, whether there
are any drastic outliers, etc.

(b) Are we missing any important variables or interactions?
This is generally addressed by adding candidate variables
or interactions to the model from step (1), to see how
much each one improves the generalization error (MSPE).

(c) Are there signs that the model might be overfitting the
data? This is generally addressed by deleting variables or
interactions that are already in the model, to see if doing
so actually improves the model’s generalization error.

You may need to iterate these three questions a few times,
going through many rounds of adding or deleting variables,
before you’re satisfied with your final model. Remember that
the best way to measure generalization error is using an out-
of-sample measure, like dMSPEout derived from a train/test
split of the data.

Once you’re happy with the model itself, then you can. . . .

(3) Use your fitted model to form predictions (and optionally,
prediction intervals) for your new data points.

Can this process be automated?

In this three-step process, step 1 (start somewhere reasonable) and
step 3 (use the final model) are usually pretty easy. The part where
you’ll spend the vast majority of your time and effort is step 2,
when you consider many different possible variables to add or
delete to the current model, and check how much they improve or
degrade the generalization error of that model.

This is a lot easier than considering all possible combinations of
variables in or out. But with lots of candidate variables, even this

building predictive models 179

iterative process can get super tedious. A natural question is, can it
be automated?

The answer is: sort of. We can easily write a computer program
that will automatically check for iterative improvements to some
baseline (“working”) model, using an algorithm called stepwise
selection:

(1) From among a candidate set of variables (the scope), check all
possible one-variable additions or deletions from the working
model;

(2) Choose the single addition or deletion that yields the best im-
provement to the model’s generalization error. This becomes
the new “working model.”

(3) Iteratively repeat steps (1) and (2) until no further improve-
ment to the model is possible.

The algorithm terminates when it cannot find any one-variable
additions or deletions that will improve the generalization error of
the working model.

Some caveats. Stepwise selection tends to work tolerably well in
practice. But it’s far from perfect, and there are some important
caveats. Here are three; the first one is minor, but the second two
are pretty major.

First, if you run stepwise selection from two different baseline
models, you will probably end up with two different final models.
This tends not to be a huge deal in practice, however, because the
two final models usually have similar mean-squared predictive
errors. Remember, when we’re using stepwise selection, we don’t
care too much about which combinations of variables we pick, as
long as we get good generalization error. Especially if the predic-
tors are correlated with each other, one set of variables might be
just as good as another set of similar (correlated) variables.

Second, stepwise selection usually involves some approxima-
tion. Specifically, at each step of stepwise selection, we have to
compare the generalization errors of many possible models. Most
statistical software will perform this comparison not by actually
calculating dMSPEout on some test data, but rather using one of
several possible heuristic approximations for MSPE. The most
common one is called the AIC approximation:4

4 In case you’re curious, AIC stands
for “Akaike information criterion.” If
you find yourself reading about AIC
on Wikipedia or somewhere similar,
it will look absolutely nothing like
the equation I’ve written here. The
connection is via a related idea called
“Mallows’ Cp statistic,” which you can
read about here.dMSPEAIC = dMSPEin

⇣
1 +

p
n

⌘
= s2

e

⇣
1 +

p
n

⌘
,

https://en.wikipedia.org/wiki/Mallows's_Cp
https://en.wikipedia.org/wiki/Mallows's_Cp

180 data science

where n is the sample size and p is the number of parameters in
the model.

The AIC estimate of mean-squared predictive error is not
a true out-of-sample estimate, like dMSPEout. Rather, it is like
an “inflated” or “penalized” version of the in-sample estimate,
dMSPEin = s2

e , which we know is too optimistic. The inflation factor
of (1 + p/n) is always larger than 1, and so dMSPEAIC is always
larger than dMSPEin. But the more parameters p you have relative
to data points n, the larger the inflation factor gets. It’s important
to emphasize that dMSPEAIC is just an approximation to dMSPEout.
It’s a better approximation than dMSPEin, but it still relies upon
some pretty specific mathematical assumptions that can easily be
wrong in practice.

The third and most important caveat is that, when using any
kind of automatic variable-selection procedure like stepwise selec-
tion, we lose the ability to use our eyes and our brains each step
of the way. We can’t plot the residuals to check for outliers or vi-
olations of the model assumptions, and we can’t ensure that the
combination of variables visited by the algorithm make any sense,
substantively speaking. It’s worth keeping in mind that your eyes,
your brain, and your computer are your three most powerful tools
for statistical reasoning. In stepwise selection, you’re taking two of
these tools out of the process, for the sake of doing a lot of brute-
force calculations very quickly.

None of these caveats are meant to imply that you shouldn’t use
stepwise selection—merely that you shouldn’t view the algorithm
as having God-like powers for discerning the single best model,
or treat it as an excuse to be careless. You should instead proceed
cautiously. Always verify that the stepwise-selected model makes
sense and doesn’t violate any crucial assumptions. It’s also a good
idea to perform a quick train/test split of your data and compute
dMSPEout for your final model, just as a sanity check, to make sure

that you’re actually improving the generalization error versus your
baseline model.

