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Exponential growth, power laws, and the log transfor-
mation

Exponential growth and decay

Beginning in March 2014, West Africa experienced the largest out-
break of the Ebola virus in history. Guinea, Liberia, Niger, Sierra
Leone, and Senegal were all hit hard by the epidemic. Figure 15.1
shows the number of laboratory-confirmed cases of Ebola in these
five countries over time, beginning on March 25.

If we wanted to fit a model to describe how the number of
Ebola infections grew over time, we might be tempted to fit a
polynomial function (since a linear model clearly won’t work well
here). However, basic biology tells us that the transmission rate of
a disease through a population is reasonably well described by an
exponential growth model: 1 infection leads to 2, which lead to 4,
which lead to 8, to 16, and so on. The equation for an exponential-
growth model is

y = a · ebt , (15.1)

where y is the expected number of cases and t is the number of
time intervals (e.g. weeks or days) since the start of the outbreak.

It turns out that we can use least squares to fit an exponential
growth model of this form, using a new trick: take the logarithm of
the response variable and fit a linear model to this new transformed
variable. We can see why this works if we take the logarithm of
y in the equation for exponential growth (labeled 15.1, above). To
preserve equality, if we take the log of the left-hand side, we also
have to take the log of the right-hand side:

log y = log
⇣

a · eb1t
⌘

= log a + bt .

The second equation says that the log of y is a linear function of
the time variable, t, with intercept b0 = log a and slope b1.
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Figure 15.1: Cases of Ebola over time in
West Africa, 2014. Compiled from CDC
reports by Francis Smart, as described
here.

Thus to fit the exponential growth model for any response
variable y, we need to follow two steps:

(1) Define a new variable z = log y by taking the logarithm
of the original response variable.

(2) Fit a linear model for the transformed variable z versus
the original predictor, using ordinary least squares.

Figure 15.2 shows the result of following these two steps for
the Ebola data. The left panel shows the straight-line fit on the log
scale:

log Cases = 4.54 + 0.021 · Days .

The right panel shows the corresponding exponential-growth
curve on the original scale:

Cases = 93.5 · e0.021·Days .

The leading constant is calculated from the intercept on the log
scale: 93.5 ⇡ e4.54. From Figure 15.2, we can see that the exponential-
growth model fits adequately, although imperfectly: the rate of
growth seems to be accelerating at the right of the picture, and the
upward trajectory is visibly nonlinear on the log scale. (Remem-
ber: all models are wrong, but some models are useful.)

An exponential model with a negative slope b1 on the log scale
is called an exponential decay model. Exponential decay is a good
model for, among other things, the decay of a radioactive isotope.

Interpreting the coefficient in an exponential model. To interpret the
coefficient in an exponential growth model, we will use it to calcu-
late the doubling time—that is, how many time steps it takes for
the response variable (here, Ebola cases) to double.

http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/index.html
http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/index.html
http://www.r-bloggers.com/1-2-millions-deaths-by-ebola-projected-within-six-months/
http://www.r-bloggers.com/1-2-millions-deaths-by-ebola-projected-within-six-months/


exponential growth, power laws, and the log transformation 163

●●
●●
●●
●●

●●●
●● ● ●

●
●
●●
●●

●
●●●

●●
●●
●●
●●
●●●
●●
●●
●
●

●

●

0 50 100 150

5

6

7

8

9

Fit on log scale

Days since start of outbreak (25 March 2014)

C
as

es
 (l

og
 s

ca
le

, b
as

e 
e)

●●●●●●●●●●●●● ● ●●●●
●●●● ●●●●●

●●●
●●
●●

●●
●●
●●

●

●

●

●

0 50 100 150

0

2000

4000

6000

Fit on original scale

Days since start of outbreak (25 March 2014)
C

as
es

Figure 15.2: An exponential-growth
model fit to the Ebola data by ordinary
least squares, where the y variable is
shown on the log scale (left) and on the
original scale (right).

In terms of our estimated model, the number of cases doubles
between days t1 and t2 whenever

aeb1t2

aeb1t1
= 2 ,

so that the number of cases on day t2 (in the numerator) is pre-
cisely twice the number of cases on day t1, in the denominator.
If we simplify this equation using the basic rules of algebra for
exponentials, we find that the number of days that have elapsed
between t1 and t2 is

t2 � t1 =
log 2

b1
.

This is our doubling time. For Ebola in West Africa, the number of
cases doubled roughly every

log 2
0.021

⇡ 32

days during the spring and early summer of 2014.
In an exponential decay model (where b1 < 0), a similar calcula-

tion would tell you the half life, not the doubling time.1 1 Instead, solve the equation

aeb1t2

aeb1t1
= 1/2

for the difference t2 � t1.

http://www.math.com/school/subject2/lessons/S2U2L2DP.html
http://www.math.com/school/subject2/lessons/S2U2L2DP.html
https://en.wikipedia.org/wiki/Half-life
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Power laws: double log transformations

In some cases, it may be best to take the log of both the predictor
and the response, and to work on this doubly transformed scale.
For example, in the upper left panel of Figure 15.3, we see a scatter
plot of brain weight (in grams) versus body weight (in kilos) for
62 different mammalian species, ranging from the lesser short-
tailed shrew (weight: 10 grams) to the African elephant (weight:
6000+ kilos). You can see that most species are scrunched up in a
small box at the lower left of the plot. This happens because the
observations span many orders of magnitude, and most are small
in absolute terms.

But if we take the log of both body weight and brain weight,
as in the top-right panel of Figure 15.3, the picture changes con-
siderably. Notice that, in each of the top two panels, the red box
encloses the same set of points. On the right, however, the double
log transformation has stretched the box out in both dimensions,
allowing us to see the large number of data points that, on the
left, were all trying to occupy the same space. Meanwhile, the two
points outside the box (the African and Asian elephants) have
been forced to cede some real estate to the rest of Mammalia.

This emphasizes the taking the log is an “unsquishing” oper-
ator. To see this explicitly, look at the histograms in the second
and third row of panels in Figure 15.3. Whenever the histogram
of a variable looks highly skewed right, as on the left, a log trans-
formation is worth considering. It will yield a much more nicely
spread-out distribution of points, as on the right.

Power laws. It turns out that when we take the log of both vari-
ables, we are actually fitting a power law for the relationship be-
tween y and x. The equation of a power law is

y = a · xb1

for some choices of a and b. This is a very common model for
data sets that span many orders of magnitude (like the body/brain
weight data). To see the connection with the double log transfor-
mation, simply take the logarithm of both sides of the power law:

log y = log
⇣

a · xb1
⌘

= log a + log xb1

= log a + b1 log x .
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Figure 15.3: Brain weight versus body
weight for 62 mammalian species, both
on the original scale and the log scale.
Notice how the log transformation
“unsquishes” the points.
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Figure 15.4: A straight-line fit to the
mammalian brain weight data after a
double log transformation.Therefore, if y and x follow a power law, then log y and log x

follow a linear relationship with intercept log a and slope b1. This
implies that we can fit the parameters of the power law by ap-
plying the double log transformation and using ordinary least
squares. For our mammalian brain weight data, applying this
recipe yields the fitted equation

log brain = 2.13 + 0.75 · log body ,

or expressed as a power law on the original scale,

brain = 8.4 · body0.75 .

The residuals in a power-law model. As we’ve just seen, we can fit
power laws using ordinary least squares after a log transformation
of both the predictor and response. In introducing this idea, we
ignored the residuals and focused only on the part of the model
that describes the systematic relationship between y and x. If we
keep track of these residuals a bit more carefully, we see that the
model we’re fitting for the ith response variable is this:

log yi = log a + b1 log xi + ei , (15.2)

where ei is the amount by which the fitted line misses log yi. We
suppressed these residuals before the lighten the algebra, but now
we’ll pay them a bit more attention.

Equation 15.2 says that the residuals affect the model in an
additive way on the log scale. But if we exponentiate both sides,
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we find that they affect the model in a multiplicative way on the
original scale:

exp(log yi) = exp(log a) · exp(b1 log x) exp(ei)

yi = axb1 exp(ei) .

Therefore, in a power low, the exponentiated residuals describe
the percentage error made by the model on the original scale. Let’s
work through the calculations for two examples:

• If ei = 0.2 on the log–log scale, then the actual response is
exp(0.2) ⇡ 1.22 times the value predicted by the model. That
is, our model underestimates this particular yi by 22%.

• If ei = �0.1 on the log–log scale, then the actual response is
exp(�0.1) ⇡ 0.9 times the value predicted by the model. That
is, our model overestimates this particular yi by 10%.

The key thing to realize here is that the absolute magnitude of
the error will therefore depend on whether the y variable itself is
large or small. This kind of multiplicative error structure makes
perfect sense for our body–brain weight data: a 10% error for a
lesser short-trailed shrew will have us off by a gram or two, while
a 10% error for an elephant will have us off by 60 kilos or more.
Bigger critters mean bigger errors—but only in an absolute sense,
and not if we measure error relative to body weight.

Interpreting the slope under a double log transformation. To correctly
interpret the slope b1 under a double log transformation, we need
a little bit of calculus. The power law that we want to fit is of the
form y = axb1 . If we take the derivative of this expression, we get

dy
dx

= b1axb1�1 .

We can rewrite this as

dy
dx

=
b1axb1

x
= b1

y
x

.

If we solve this expression for b1, we get

b1 =
dy/y
dx/x

. (15.3)
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Since the dy in the derivative means “change in y”, the numera-
tor is the rate at which the y variable changes, as a fraction of its
value. Similarly, since dx means “change in x”, the denominator is
the rate at which the x variable changes, as a fraction of its value.

Putting this all together, we find that b1 measures the ratio of
percentage change in y to percentage change in x. In our the mam-
malian brain-weight data, the least-squares estimate of the slope
on a log-log scale was bb1 = 0.75. This means that, among mam-
mals, a 100% change (i.e. a doubling) in body weight is associated
with a 75% expected change in brain weight. The bigger you are, it
would seem, the smaller your brain gets—at least relatively speak-
ing.

The coefficient b1 in a power law is often called an elasticity
parameter, especially in economics, where it is used to quantify
the responsiveness of consumer demand to changes in the price of
a good or service. The underlying model for consumer behavior
that’s often postulated is that

Q = aPb1 ,

where Q is the quantity demanded by consumers, P is the price,
and b1 < 0. Economists would call b1 the price elasticity of de-
mand,2 which may be a familiar concept from a microeconomics 2 They actually define elasticity as the

ratio in Equation 15.3, but as we’ve
seen, this is mathematically equivalent
to the regression coefficient you get
when you fit the x–y relationship using
a power law.

course.

https://en.wikipedia.org/wiki/Price_elasticity_of_demand
https://en.wikipedia.org/wiki/Price_elasticity_of_demand

