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Multiple regression: the basics

From lines to planes

Linear regression, as we’ve learned, is a powerful tool for finding
patterns in data. So far, we’ve only considered models that involve
a single numerical predictor, together with as many grouping
variables as we want. These grouping variables were allowed to
modulate the intercept, or both the slope and intercept, of the
underlying relationship between the numerical predictor (like
SAT score) and the response (like GPA). This allowed us to fit
different lines to different groups, all within the context of a single
regression equation.

In this chapter, we learn how to build more complex models
that incorporate two or more numerical predictors. For example,
consider the data in Figure 14.1 on page 144, which shows the
highway gas mileage versus engine displacement (in liters) and
weight (in pounds) for 59 different sport-utility vehicles.1 The data 1 These are the same SUVs shown in the

second-from-right panel in FIgure 13.4,
when we discussed ANOVA for models
involving correlated predictors.

points in the first panel are arranged in a three-dimensional point
cloud, where the three coordinates (xi1, xi2, yi) for vehicle i are:

• xi1, engine displacement, increasing from left to right.

• xi2, weight, increasing from foreground to background.

• yi, highway gas mileage, increasing from bottom to top.

Since it can be hard to show a 3D cloud of points on a 2D page, a
color scale has been added to encode the height of each point in
the y direction. (Note: in general it’s hard to interpret 3D graphics
and they’re not a good idea. We’ve been very careful here to try to
show a 3D graphic just this once, specifically so you can get some
intuition for the idea of a regression plane; in general, this is not
how we recommend visualizing data.)

Fitting a linear equation for y versus x1 and x2 results in a re-
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Figure 14.1: Highway gas mileage
versus weight and engine displacement
for 59 SUVs, with the least-squares fit
shown in the bottom panel.
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gression model of the following form:

yi = b0 + b1xi1 + b2xi2 + ei .

Just as before, we call the b’s the coefficients of the model and the
ei’s the residuals. In Figure 14.1, this fitted equation is

MPG = 33 � 1.35 · Displacement � 0.00164 · Weight + Residual .

Both coefficients are negative, showing that gas mileage gets worse
with increasing weight and engine displacement.

This equation is called a multiple regression model. In geometric
terms, it describes a plane passing through a three-dimensional
cloud of points, which we can see slicing roughly through the mid-
dle of the points in the bottom panel in Figure 14.1. This plane has
a similar interpretation as the line did in a simple one-dimensional
linear regression. If you read off the height of the plane along the
y axis, then you know where the response variable is expected to
be, on average, for a particular pair of values (x1, x2).

In more than two dimensions. In principle, there’s no reason to stop
at two predictors. We can easily generalize this idea to fit regres-
sion equations using p different predictors xi = (xi,1, xi,2, . . . , xi,p):

We use a bolded xi as shorthand to
denote the whole vector of predic-
tor values for observation i. That
way we don’t have to write out
(xi,1, xi,2, . . . , xi,p) every time. When
writing things out by hand, a little
arrow can be used instead, since you
obviously can’t write things in bold:
~xi = (xi,1, xi,2, . . . , xi,p). By the same
logic, we also write ~b for the vector
(b0, b1, . . . , bp).

ŷi = b0 + b1xi,1 + b2xi,2 + · · · + bpxi,p = b0 +
p

Â
k=1

bkxi,k .

This is the equation of a p-dimensional plane embedded in (p + 1)-
dimensional space. This plane is nearly impossible to visualize
beyond p = 2, but straightforward to describe mathematically.

From simple to multiple regression: what stays the same. In this jump
from the familiar (straight lines in two dimensions) to the foreign
(planes in arbitrary dimensions), it helps to start out by catalogu-
ing several important features that don’t change.

First, we still fit parameters of the model using the principle of
least squares. As before, we will denote our estimates by bb0, bb1,
bb2, and so on. For a given choice of these coefficients, and a given
point in predictor space, the fitted value of y is

ŷi = bb0 + bb1xi,1 + bb2xi,2 + · · · + bbpxi,p .

This is a scalar quantity, even though the regression parameters
describe a p-dimensional hyperplane. Therefore, we can define the
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residual sum of squares in the same way as before, as the sum of
squared differences between fitted and observed values:

n

Â
i=1

e2
i =

n

Â
i=1

(yi � ŷi)
2 =

n

Â
i=1

n
yi � (bb0 + bb1xi,1 + bb2xi,2 + · · · + bbpxi,p)

o2
.

The principle of least squares prescribes that we should choose the
estimates so as to make the residual sum of squares as small as
possible, thereby distributing the “misses” among the observations
in a roughly equal fashion. Just as before, the little ei is the amount
by which the fitted plane misses the actual observation yi.

Second, these residuals still have the same interpretation as
before: as the part of y that is unexplained by the predictors. For
a least-squares fit, the residuals will be uncorrelated with each
of the original predictors. Thus we can interpret ei = yi � ŷi
as a statistically adjusted quantity: the y variable, adjusted for
the systematic relationship between y and all of the x’s in the
regression equation. Here, as before, statistical adjustment just
means subtraction.

Third, we still summarize preciseness of fit using R2, which has
the same definition as before:

R2 = 1 � Ân
i=1(yi � ŷi)

2

Ân
i=1(yi � ȳ)2 .

The only difference is that ŷi is now a function of more than just
an intercept and a single slope.

Multiple regression and partial relationships

Not everything about our inferential process stays the same when
we move from lines to planes. We will focus more on some of
the differences later, but for now, we’ll mention a major one: the
interpretation of each b coefficient is no longer quite so simple as
the interpretation of the slope in one-variable linear regression.

The best way to think of bbk is as an estimated partial slope: that
is, the change in y associated with a one-unit change in xk, holding
all other variables constant. This is a subtle interpretation that is
worth considering at length. To understand it, it helps to isolate
the contribution of xk on the right-hand side of the regression
equation. For example, suppose we have two numerical predictors,
and we want to interpret the coefficient associated with x2. Our
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equation is

yi|{z}
Response

= b0 + b1xi1| {z }
Effect of x1

+ b2xi2| {z }
Effect of x2

+ ei|{z}
Residual

.

To interpret the effect of the x2 variable, we isolate that part of the
equation on the right-hand side, by subtracting the contribution of
x1 from both sides:

yi � b1xi1| {z }
Response, adjusted for x1

= b0 + b2xi2| {z }
Regression on x2

+ ei|{z}
Residual

.

On the left-hand side, we have something familiar from one-
variable linear regression: the y variable, adjusted for the effect
of x1. If it weren’t for the x2 variable, this would just be the resid-
ual in a one-variable regression model. Thus we might call this
term a partial residual.

On the right-hand side we also have something familiar: an or-
dinary one-dimensional regression equation with x2 as a predictor.
We know how to interpret this as well: the slope of a linear regres-
sion quantifies the change of the left-hand side that we expect to
see with a one-unit change in the predictor (here, x2). But here the
left-hand side isn’t y; it is y, adjusted for x1. We therefore conclude
that b2 is the change in y, once we adjust for the changes in y due to
x1, that we expect to see with a one-unit change in the x2 variable.

This same line of reasoning can allow us to interpret b1 as well:

yi � b2xi2| {z }
Response, adjusted for x2

= b0 + b1xi1| {z }
Regression on x1

+ ei|{z}
Residual

.

Thus b1 is the change in y, once we adjust for the changes in y due to
x2, that we expect to see with a one-unit change in the x1 variable.

We can make the same argument in any multiple regression
model involving two or more predictors, which we recall takes the
form

yi = b0 +
p

Â
k=1

bkxi,k + ei .

To interpret the coefficient on the jth predictor, we isolate it on the
right-hand side:

yi � Â
k 6=j

bkxi,k

| {z }
Response adjusted for all other x’s

= b0 + b jxij| {z }
Regression on xj

+ ei|{z}
Residual

.
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Thus b j represents the rate of change in y associated with one-
unit change in xj, after adjusting for all the changes in y that can
be predicted by the other predictor variables.

Partial versus overall relationships. A multiple regression equa-
tion isolates a set of partial relationships between y and each of the
predictor variables. By a partial relationship, we mean the rela-
tionship between y and a single variable x, holding other variables
constant. The partial relationship between y and x is very differ-
ent than the overall relationship between y and x, because the latter
ignores the effects of the other variables. When the two predictor
variables are correlated, this difference matters a great deal.

To compare these two types of relationships, let’s take the multi-
ple regression model we fit to the data on SUVs in Figure 14.1:

MPG = 33 � 1.35 · Displacement � 0.00164 · Weight + Residual .

This model isolates two partial relationships:

• We expect highway gas mileage to decrease by 1.35 MPG for
every 1-liter increase in engine displacement, after adjusting
for the simultaneous effect of vehicle weight on mileage. That
is, if we held weight constant and increased the engine size
by 1 liter, we’d expect mileage to go down by 1.35 MPG.

• We expect highway gas mileage to decrease by 1.64 MPG for
every additional 1,000 pounds of vehicle weight, after ad-
justing for the simultaneous effect of engine displacement on
gas mileage. That is, if we held engine displacement constant
and added 1,000 pounds of weight to an SUV, we’d expect
mileage to go down by 1.64 MPG.

Let’s compare these partial relationships with the overall re-
lationships depicted in Figure 14.2. Here we’ve fit two separate
one-variable regression models: mileage versus engine displace-
ment on the left, and mileage versus vehicle weight on the right.

Focus on the left panel of Figure 14.2 first. The least-squares fit
to the data is

MPG = 30.3 � 2.5 · Displacement + Residual .

Thus when displacement goes up by 1 liter, we expect mileage to
go down by 2.5 MPG. This overall slope is quite different from the
partial slope of �1.35 isolated by the multiple regression equation.
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ŷi = 34.5 − 0.0031 ⋅ xi2

Figure 14.2: Overall relationships for
highway gas mileage versus weight and
engine displacement individually.That’s because this model doesn’t attempt to adjust for the effects

of vehicle weight. Because weight is correlated with engine dis-
placement, we get a steeper estimate for the overall relationship
than for the partial relationship: for cars where engine displace-
ment is larger, weight also tends to be larger, and the correspond-
ing effect on the y variable isn’t controlled for in the left panel.

Similarly, the overall relationship between mileage and weight is

MPG = 34.5 � 0.0031 · Weight + Residual .

The overall slope of �0.0031 is nearly twice as steep the partial
slope of �0.00164. The one-variable regression model hasn’t suc-
cessfully isolated the marginal effect of increased weight from
that of increased engine displacement. But the multiple regression
model has—and once we hold engine displacement constant, the
marginal effect of increased weight on mileage looks smaller.

Figure 14.3 provides some intuition here about the difference
between an overall and a partial relationship. The figure shows
a lattice plot where the panels correspond to different strata of
engine displacement: 2–3 liters, 3–4.5 liters, and 4.5–6 liters. Within
each stratum, engine displacement doesn’t vary by much—that is,
it is approximately held constant. Each panel in the figure shows
a straight line fit that is specific to the SUVs in each stratum (blue
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Figure 14.3: A lattice plot of mileage
versus weight, stratified by engine dis-
placement. The blue points within each
panel show only the SUVs within a
specific range of engine displacements:
 3 liters on the left, 3–4.5 liters in the
middle, and > 4.5 liters on the right.
The blue line shows the least-squares
fit to the blue points alone within each
panel. For reference, the entire data set
is also shown in each panel (pink dots),
together with the overall fit (red line)
from the right-hand side of Figure 14.2.
The blue lines are shallower than the
red line, suggesting that once we hold
engine displacement approximately
(thought not perfectly) constant, we
estimate a different (less steep) relation-
ship between mileage and weight.

dots and line), together with the overall linear fit to the whole data
set (red dots and line).

The two important things to notice here are the following.

(1) The SUVs within each stratum of engine displacement are in
systematically different parts of the x–y plane. For the most
part, the smaller engines are in the upper left, the middle-
size engines are in the middle, and the bigger engines are
in the bottom right. When weight varies, displacement also
varies, and each of these variables have an effect on mileage.
Another way of saying this is that engine displacement is a
confounding variable for the relationship between mileage and
weight. A confounder is something that is correlated with both
the predictor and response.

(2) In each panel, the blue line has a shallower slope than the red
line. That is, when we compare SUVs that are similar in engine
displacement, the mileage–weight relationship is not as steep
as it is when we compare SUVs with very different engine
displacements.

This second point—that when we hold displacement roughly
constant, we get a shallower slope for mileage versus weight—
explains why the partial relationship estimated by the multiple
regression model is different than the overall relationship from
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the left panel of Figure 14.2.2 The slope of �1.64 ⇥ 10�3 MPG per 2 This is a very general property of re-
gression: if x1 and x2 are two correlated
(collinear) predictors, then adding x2 to
the model will change the coefficient on
x1, compared to a model with x1 alone.

pound from the multiple regression model addresses the question:
how fast should we expect mileage to change when we compare
SUVs with different weights, but with the same engine displace-
ment? This is similar to the question answered by the blue lines in
Figure 14.3, but different than the question answer by the red line.

It is important to keep in mind that this “isolation” or “adjust-
ment” is statistical in nature, rather than experimental. Most real-
world systems simply don’t have isolated variables. Confounding
tends to be the rule, rather than the exception. The only real way
to isolate a single factor is to run an experiment that actively ma-
nipulates the value of one predictor, holding the others constant,
and to see how these changes affect y. Still, using a multiple-
regression model to perform a statistical adjustment is often the
best we can do when facing questions about partial relationships
that, for whatever reason, aren’t amenable to experimentation.

Using multiple regression to address real-world questions

While there are many possible uses of multiple regression, most
applications will fall into one of two categories:

(1) Isolating a partial relationship between the response and a
predictor of interest, adjusting for possible confounders.

(2) Building a predictive model for forecasting the response, using
all available sources of information.

In the rest of this chapter, we’l focus on the first use of re-
gression (isolating a partial relationship), deferring the second
(building a predictive model) for later. As a case study, we’ll use
a running example on house prices from Saratoga County, New
York, distributed as part of the mosaic R package. We’ll show how,
together with multiple regression, this data set can be used to
address a few interesting questions of the kind that might be rele-
vant to anyone buying, selling, or assessing the taxable value of a
house.

How much is a fireplace worth?

Our first question is: how much does a fireplace improve the
value of a house for sale? Figure 14.4 would seem to say: by about
$66,700 per fireplace. This dot plot shows the sale price of houses
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Figure 14.4: The relationship between
the price of a house and the number of
fireplaces it has.in Saratoga County, NY that were on the market in 2006.3 We also

3 Data from “House Price Capitalization
of Education by Part Year Residents,”
by Candice Corvetti. Williams College
honors thesis, 2007, available here, and
in the mosaic R package.

see a linear regression model for house price versus number of
fireplaces, leading to the equation

Price = $171800 + 66, 700 · Fireplaces + Residual ,

This fitted equation is shown as a blue line in Figure 14.4. The
means of the individual groups (1 fireplace, 2 fireplaces, etc) are
also shown as blue dots. This helps us to verify that the assump-
tion of linearity is reasonable here: the line passes almost right
through the group means, except the one for houses with four
fireplaces (which corresponds to just two houses).

But before you go knocking a hole in your ceiling and hiring a
bricklayer so that you might cash in on your new fireplace, consult
Figure 14.5 on page 153. This figure shows that we should be care-
ful in interpreting the figure of $66,700 per fireplace arising from
the simple one-variable model. Specifically, it shows that houses

http://web.williams.edu/Economics/Honors/2007/Corvetti%20-%20Thesis%20-%20May%208.pdf
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Figure 14.5: The relationship of house
price with living area (bottom left)
and with the logarithm of lot size in
acres (bottom right). Both of these
variables are potential confounders for
the relationship between fireplaces and
price, because they are also correlated
with the number of fireplaces (top row).
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with more fireplaces also tend to be bigger (top left panel) and to
sit on lots that have more land area (top right). These factors are
also correlated with the price of a house.

Thus we have two possible explanations for the relationship we
see in Figure 14.4. This correlation may happen because fireplaces
are so valuable. On the other hand, it may instead (or also) happen
because fireplaces happen to occur more frequently in houses
that are desireable for other reasons (i.e. they are bigger). This is
confounding again: when some third variable is correlated with
both the response and the predictor of interest.

Disentangling these two possibilities requires estimating the
partial relationship between fireplaces and prices, rather than the
overall relationship shown in Figure 14.4. After all, when someone
like a realtor or the county tax assessor asks how much a fireplace
is worth, what they really want to know is: how much is a fire-
place worth, holding other relevant features of the house constant?

To address this question, we can fit a multiple regression model
for price versus living area, lot size, and number of fireplaces. This
will allow us to estimate the partial relationship between fireplaces
and price, holding square footage and lot size constant. Such a
model can tell us how much more we should expect a house with
a fireplace to be worth, compared to a house that is identical in
size and acreage but without a fireplace.

Fitting such a model to the data from Saratoga County yields
the following equation:

Price = $17787 + 108.3 · SqFt + 1257 · log(Acres)+ 8783 · Fireplaces + Residual .
(14.1)

According to this model, the value of one extra fireplace is
about $8,783, holding square footage and lot size constant. This is
a much lower figure than the $66,700 fireplace premium that we
would naïvely estimate from the overall relationship in Figure 14.4.

The example emphasizes the use of multiple regression to ad-
just statistically for the effect of confounders, by estimating a par-
tial relationship between the response and the predictor of interest.
This is one of the most useful real-world applications of regression
modeling, and we’ll see many similar examples. In general, the
advice is: if you want to estimate a partial relationship, make sure
you include the potential confounders in the model.
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Figure 14.6: Bootstrapped estimates
for the sampling distributions of the
partial slopes for number of fireplaces
(left) and square footage (right) from
the model in Equation 14.1 on page 154.
The least-squares estimates are shown
as vertical red lines.

Uncertainty quantification

We can use bootstrapping to get confidence intervals for partial
relationships in a multiple regression model, just as we do in a
one-variable regression model.

The left panel of Figure 14.6 shows the bootstrapped estimate
of the sampling distribution for the fireplace coefficient in our
multiple regression model. The 95% confidence interval here is
(1095, 16380). Thus while we do have some uncertainty we have
about the value of a fireplace, we can definitively rule out the
number estimated using the overall relationship from Figure 14.4.
If the county tax assessor wanted to value your new fireplace at
$66,700 for property-tax purposes, Figure 14.6 would make a good
argument in your appeal.4 4 At a 2% property tax rate, this might

save you over $1000 a year in taxes.The right-hand side of Figure 14.6 shows the bootstrapped
sampling distribution for the square-foot coefficient. While this
wasn’t the focus of our analysis here, it’s interesting to know that
an additional square foot improves the value of a property by
about $108, plus or minus about $8.

Model checking

However, before we put too much faith in the conclusions of your
fitted model, it’s important to check whether the assumption of a
linear regression model is appropriate in the first place. We call
this step model checking. We’ll learn a lot more about model check-
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where the assumption of linearity
is met, these residuals should look
randomly distributed around zero
at every value of the predictor (here,
fireplaces). Right: observed house
prices versus fitted house prices from
the multiple regression model. In
a model where the assumption of
linearity is reasonable, these points
should fall randomly around the
straight “y=x” line, with slope 1 and
intercept 0.

ing later, but for now we’ll cover the most basic step: validating
that the response varies linearly with the predictors.

In one-variable regression models, we addressed this question
using a plot of the residuals ei versus the original predictor xi.
This allowed us to check whether there was still a pattern in the
residuals that suggested a nonlinear relationship between the
predictor and response. There are two ways to extend the idea of a
residual plot to multiple regression models:

• plotting the residuals versus each of the predictors xij in-
dividually. This allows us to check whether the response
changes linearly as a function of the jth predictor.

• plotting the actual values yi versus the fitted values ŷi and
looking for nonlinearities. This allows us to check whether
the responses depart in a systematically nonlinear way from
the model predictions.

Figure 14.7 shows an example of each plot. The left panel shows
each the residual for each house versus the number of fireplaces
it contains. Overall, this plot looks healthy: there are no obvious
departures from linearity. The one caveat is that the predictions for
houses with four fireplaces may be too low, which we can see from
the fact that the mean residual for four-fireplace houses is positive.
Then again, there are only two such houses, making it difficult to
draw a firm conclusion here. We probably shouldn’t change our
model just to chase a better fit for two (very unusual) houses out
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Price versus heating system Figure 14.8: Prices of houses with gas,
electric and fuel-oil heating systems.

of 1,726. But we should also recognize that our model might not
be great at predicting the price for a house with four fireplaces,
simply because it would involve extrapolation: we don’t have a lot
of data that can inform us about these houses.

The right panel of Figure 14.7 shows a plot of yi versus ŷi. This
also looks like a nice linear relationship, giving us further confi-
dence that our model isn’t severely distorting the true relationship
between predictors and response. In a large multiple regression
model with many predictors, it may be tedious to look at ei versus
each of those predictors individually. In such cases, a plot of yi
versus ŷi should be the first thing you examine to check for nonlin-
earities in the overall fit.

How much is gas heating worth? Grouping variables in multiple regression

Saratoga, NY is cold in the winter: the average January day has
a low of 13� F and a high of 31� F. As you might imagine, resi-
dents spend a fair amount of money heating their homes, and are
sensitive to the cost differences between gas, electric, and fuel-oil
heaters. Figure 14.8 suggests that the Saratoga real-estate market
puts a big premium for houses with gas heaters (mean price of
$228,000) versus those with electric or fuel-oil heaters (mean prices
of $165,000 and $189,000, respectively). One possible reason is that
gas heaters are cheaper to run and maintain.
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Variable Estimate Std. Error 2.5% 97.5%

Intercept 29868 6743 16644 43093
livingArea 105 3 99 112

log(lotSize) 2705 1913 -1047 6457
fireplaces 7547 3348 980 14113

fuel=electric -14010 4471 -22778 -5242
fuel=oil -15879 5295 -26265 -5494

Table 14.1: Coefficients, standard
errors, and 95% confidence intervals for
the multiple regression model for house
price (y) versus living area, log of lot
size, number of fireplaces, and heating
system type.

But this figure shows an overall relationship. What does the
story look like when we adjust for the effect of living area, lot
size, and the number of fireplaces? There could be a confounding
effect here. For example, maybe the bigger houses tend to have gas
heaters more frequently than the small houses, or maybe fireplaces
are used more in homes with expensive-to-use heating systems.

Remember: if you want to isolate a partial relationship, include
potential confounders in the model. We’ll do this here by includ-
ing two sets of terms: (1) dummy variables for heating-system
type, to model the partial relationship of interest; and (2) all the
possible confounding variables that we had in our previous re-
gression equation (on page 154), which includes living area, lot
size, and number of fireplaces. Fitting this model by least squares
yields the following equation:

Price = $29868 + 105.3 · SqFt + 2705 · log(lotSize) + 7546 · Fireplaces

� 14010 · 1{fuel = electric} � 15879 · 1{fuel = oil} + Residual .

The full table of coefficients, standard errors, and 95% confidence
intervals is in Table 14.1. The baseline here is gas heating, since it
has no dummy variable.

Notice how the coefficients on the dummy variables for the
other two types of heating systems shift the entire regression equa-
tion up or down. This model estimates the premium associated
with gas heating to be about $14,000 ± 4500 over electric heating
(estimate, plus-or-minus one standard error), and about $16,000 ±
5300 over fuel-oil heating. Because these are terms in a multiple
regression model, these numbers represent partial relationships,
adjusting for size, lot acreage, and number of fireplaces.
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Assessing statistical significance

A question that often comes up in multiple regression is whether
a particular term in the model is “statistically significant” at some
specified level (e.g. 5%). All this means is whether zero is a plau-
sible value for that partial slope in the model. Remember, a coef-
ficient of zero means that there is no partial relationship between
the response and the corresponding predictor, adjusting for the
other terms in the model. So when we say that a predictor is statis-
tically significant, all we mean is that it we think it has a nonzero
(partial) relationship with the response.

Here are a few quick observations and guidelines about the
topic of “statistical significance.”

First, by convention, people express the statistical significance
level as the opposite of the confidence level. So a confidence level
of 95% means a significance level of 5%; a confidence level of 99%
means a significance level of 1%; and so forth. This is confusing
at first, but you’ll get used to it. Just remember: the lower the sig-
nificance level, the stronger the evidence that some variable has a
nonzero relationship with the response.

Second, in regression models we can often assess statistical
significance just by looking at whether zero is included in the
confidence interval. That’s because “statistically significant” just
means “zero is not a plausible value,” and a confidence interval
gives us a range of plausible values. For example, let’s take the
95% confidence intervals for two terms in Table 14.1:

• The 95% confidence interval for the partial slope on fireplaces
is (980, 14113). We can rule out zero as a plausible value at
a 95% confidence level, and so we can say that the lot size
variable is statistically significant at the 5% level.

• The 95% confidence interval for the partial slope on lot size
is (�1047, 6457). We cannot rule out zero as a plausible value
with 95% confidence, and so the lot size variable is not statis-
tically significant at the 5% level.

Third, the fact that some variable is “statistically significant”
does not mean that this variable is important in practical terms.
A “significant” variable does not necessarily have a large effect
on the response, nor is it automatically important for generating
good predictions. Statistical significance means that we think the
corresponding coefficient isn’t zero. But it could still be very small.
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This is why, in most cases, it is better to focus on a variable’s confi-
dence interval, rather than on whether a variable is significant. The
confidence interval carries a lot more information than a simplistic
distinction between “significant” and “insignificant,” because it
gives you a range of plausible values for the coefficient.

Finally, the fact that some variable is not statistically signifi-
cant does not imply that this variable has no relationship with
the response, or that it should automatically be dropped from
the model. A lack of statistical significance could just mean a lot
of uncertainty—in other words, that the data aren’t capable of
precisely estimating the numerical magnitude of some variable’s
partial relationship with the response. There’s an important but
subtle distinction here: an insignificant coefficient means that we
have an absence of compelling evidence for a nonzero effect. It does
not mean that we have found compelling evidence that the effect is
absent.

For example, the confidence interval for the log(acres) term in
Table 14.1 is (�1047, 6457). We therefore cannot rule out zero as
a plausible value. But there are lot of large values, like 5000 or
6000, that we cannot rule out, either! There’s a lot of uncertainty
here. One symptom of this is a wide confidence interval; another
symptom is a lack of statistical significance at the 5% level. But
it does not follow that lot size is irrelevant for predicting house
price.5 5 In this the large standard error is al-

most surely due to collinearity between
lot size and other predictors.


