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Experiments

Statistical questions versus causal questions

Why have some nations become rich while others have remained
poor? Do small class sizes improve student achievement? Does
following a Mediterranean diet rich in vegetables and olive oil
reduce your risk of a heart attack? Does a “green” certification
(like LEED, for Leadership in Energy and Environmental Design)
improve the value of a commercial property?

Questions of cause and effect like these are, fundamentally,
questions about counterfactual statements. A counterfactual is
an if–then statement about something that has not actually oc-
curred. For example: “If Colt McCoy had not been injured early
in the 2010 National Championship football game, then the Texas
Longhorns would have beaten Alabama.” If you judge this coun-
terfactual statement to be true—and who but the most hopelessly
blinkered Crimson Tide fan doesn’t?—then you might say that
Colt McCoy’s injury caused the Longhorns’ defeat.

Statistical questions, on the other hand, are about correlations.
This makes them fundamentally different from causal questions.

• Causal: “If we invested more money in our school system,
how much faster would our economy grow?” Statistical:
“In looking at data on a lot of countries, how are education
spending and economic growth related?”

• Causal: “If I ate more vegetables than I do now, how much
longer would I live?” Statistical: “Do people who eat a lot of
vegetables live longer, on average, than people who don’t?”

• Causal: “If we hire extra teachers at our school and reduce
our class sizes, will our students’ test scores improve?” Sta-
tistical: “Do students in smaller classes tend to have higher
test scores?”

http://www.usgbc.org/leed
https://en.wikipedia.org/wiki/2010_BCS_National_Championship_Game
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08 Figure 11.1: Two egregious examples of

selective reporting.

Causal questions all invoke some kind of hypothetical interven-
tion, where one thing is changed and everything else is held equal.
In such a hypothetical intervention, there is no competing expla-
nation for what might be causing the change we expect to see—in
our economy, our lifespan, our students’ test scores, a football
game, or whatever outcome we’re interested in.

Statistical questions, on the other hand, are about the patterns
we observe in the real world. And the real world is rarely so sim-
ple as the hypothetical interventions we imagine. For example,
people who eat more vegetables live longer—that’s a clear pattern.
But those same people also tend to exercise more, live in better
housing, and have higher-status jobs. These other factors are con-
founders. A confounder is a competing explanation—some other
factor correlated with both the “treatment” assignment (whether
someone eats vegetables) and the response (lifespan). So in light
of these confounders, how do we know it’s the vegetables, rather
than all that other stuff, that’s making veggie-eaters live longer?

This is just a specific version of the general question we’ll ad-
dress in this chapter: under what circumstances can causal ques-
tions be answered using statistics?

Good evidence . . . and bad

Most of the cause-and-effect reasoning that you’ll see out there in
the real world is of depressingly poor quality. A common flaw is
cherry picking: that is, pointing to data that seems to confirm some
argument, while ignoring contradictory data.

Here’s an example. In the left panel in Figure 11.1 we see a
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group of seven countries that all spend around 1.5% of their GDP
on education, but with very different rates of economic growth for
the 37 years spanning 1960 to 1996. In the right panel, we see an-
other group of six countries with very different levels of spending
on education, but similar growth rates of 2–3%.

Both highly selective samples make it seem as though educa-
tion and economic growth are barely related. If presented with
the left panel alone, you’d be apt to conclude that the differences
in growth rates must have been caused by something other than
differences in education spending (of which there are none). Like-
wise, if presented with the right panel alone, you’d be apt to con-
clude that the large observed differences in education spending
don’t seem to have produced any difference in growth rates. The
problem here isn’t with the data—it’s with the biased, highly selec-
tive use of that data.

This point seems almost obvious. Yet how tempting it is just to
cherry pick and ignore the messy reality. Perhaps without even re-
alizing it, we’re all accustomed to seeing news stories that marshal
highly selective evidence—usually even worse than that of Figure
11.1—on behalf of some plausible because-I-said-so story:

[H]igher levels of education are critical to economic growth. . . .
Boston, where there is a high proportion of college graduates,
is the perfect example. Well-educated people can react more
quickly to technological changes and learn new skills more
readily. Even without the climate advantages of a city like San
Jose, California, Boston evolved into what we now think of
as an “information city.” By comparison, Detroit, with lower
levels of education, languished.1 1 “Economic Scene.” New York Times

(Business section); August 5, 2004
And this from a reporter who presumably has no hidden agenda.
Notice how the selective reporting of evidence—one causal hy-
pothesis, two data points—lends an air of such graceful inevitabil-
ity to what is a startlingly superficial analysis of the diverging
economic fates of Boston and Detroit over the last half century.

Of course, most bad arguments are harder to detect than this
howler from the New York Times. After all, using data to under-
stand cause-and-effect relationships is hard. For example, consider
the following summary of a recent neuroscience study:

A study presented at the Society for Neuroscience meeting, in
San Diego last week, shows people who start using marijuana
at a young age have more cognitive shortfalls. Also, the more
marijuana a person used in adolescence, the more trouble
they had with focus and attention. “Early onset smokers
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Figure 11.2: A scatter plot of GDP
growth versus education spending
for 79 countries. The tiny red dots
clustered near the x and y axes are
called rug plots. They are miniature
histograms aligned with the axes of the
predictor and the response.

have a different pattern of brain activity, plus got far fewer
correct answers in a row and made way more errors on certain
cognitive tests,” says study author Staci Gruber.2

2 www.usatoday.com/yourlife/
health/medical/pediatrics/
2010-11-20-teendrugs22_ST_N.htm

Did the marijuana smokers get less smart, or were the less-smart
kids more likely to pick up a marijuana habit in the first place?
It’s an important question to consider in making drug policy,
especially for states and countries where marijuana is legal. But
can we know the answer on the basis of a study like this?

For another example, consider the bigger sample of countries in
Figure 11.2, which provides a much more representative body of
evidence on the GDP-versus-education story. This evidence takes
the form of a scatter plot of GDP growth versus education spend-
ing for a sample of 79 countries worldwide. Notice the following
two facts:

(1) Of the 29 countries that spent less than 2% of GDP on
education, 18 fall below the median growth rate (1.58%).

www.usatoday.com/yourlife/health/medical/pediatrics/2010-11-20-teendrugs22_ST_N.htm
www.usatoday.com/yourlife/health/medical/pediatrics/2010-11-20-teendrugs22_ST_N.htm
www.usatoday.com/yourlife/health/medical/pediatrics/2010-11-20-teendrugs22_ST_N.htm
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(2) Of the 18 countries that spent more than 3% of GDP on
education, 16 fall above the median growth rate.

These two facts, together with the upward trend in the scatter plot,
suggest that economic growth and education spending are corre-
lated. But this does not settle the causal question. For example, it
might be that countries spend a lot on education because they are
rich, rather the other way around.

The generic difficulty is that there are many different ways that
two variables X and Y can appear correlated.

(1) One-way causality: the first domino falls, then the second; the
rain falls, and the grass gets wet. (X causes Y directly.)

(2) Two-way causality: flowers and honey bees prosper together.
(Both X and Y play a role in causing each other.)

(3) Common cause: People who go to college tend to get higher-
paying jobs than those who don’t. Does education directly
lead to better economic outcomes? Or are a good education
and a good job both just markers of a person’s underlying
qualities? (The role of X in causing Y is hard to distinguish
from the role of C, which we may not have observed.)

(4) Common effect: either musical talent (X) or athletic talent (Y)
will help you get into Harvard (Z). Among a population
of Harvard freshmen, musical and athletic talent will thus
appear negatively correlated, even if they are independent
in the wider population. (X and Y both contribute to some
common outcome C, inducing a correlation among a subset
of the population defined by Z. This is often called Berkson’s
paradox; it is subtle, and we’ll encounter it again.)

(5) Luck: the observed correlation is a coincidence.

This is the point where most books remind you that “correla-
tion does not imply causation.” Obviously. But if not to illuminate
causes, what is the point of looking for correlations? Of course cor-
relation does not imply causality, or else playing professional bas-
ketball would make you tall. But that hasn’t stopped humans from
learning that smoking causes cancer, or that lightning causes thun-
der, on the basis of observed correlations. The important question
is: what distinguishes the good evidence-based arguments from
the bad?
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Figure 11.3: Originally published online
at xkcd: http://xkcd.com/552/

Four common identification strategies

The key principle in using evidence to draw causal conclusions is
that of a balanced comparison. To make things simple, we’ll imag-
ine that our predictor X is binary (i.e. has two groups), and we’ll
borrow the lingo of a clinical trial by referring to the two groups
as the “treatment” and “control.” To reach the conclusion that X
causes Y, you must do two things: (1) compare cases in the treat-
ment and control groups, to see how their Y values differ; and
(2) ensure balance, by removing all other systematic differences be-
tween the cases in the treatment and control groups. Balance is
crucial; it’s what allows us to conclude that the differences in X
(and not something else) cause the differences we observe in Y.

In general, there are four common ways to make a balanced
comparison. These are often called identification strategies, in the
sense that they are strategies for identifying a causal effect.

(1) Run a real experiment, randomizing subjects to the treatment
and control groups. The randomization will ensure that, on
average, there are no systematic differences between the two
groups, other than the treatment.

(2) Find a natural experiment: that is, find a situation where the way
that cases fall naturally into the treatment and control groups
plausibly resembles a random assignment.

(3) Matching: artificially construct a balanced data set from an
unbalanced data set, by explicitly matching treated cases
with similar control cases, and discarding the cases without
a good match. This will correct for lack of balance between
control and treatment groups.

http://xkcd.com/552/
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(4) Modeling: use regression modeling to adjust for confounders
and isolate a partial relationship between the response and
the treatment of interest. This an extension of the idea of
statistical adjustment or “making fair comparisons” idea that
we encountered in fitting simple straight lines.

In this chapter, we’ll focus on the first option: run an experi-
ment. In later chapters, we’ll talk about the other ideas.

The power of experiment

The idea of an experiment is simple. If you want to know what
would happen if you intervened in some system, then you should
intervene, and measure what happens. There is simply no better
way to establish that one thing causes another.

Indeed, one kind of experiment—the randomized, controlled
clinical trial—is one of the most important medical innovations
in history. Suppose we want to establish whether a brand new
cholesterol drug—we’ll call it Zapaclot—works better than the old
drug. Also suppose that we’ve successfully recruited a large cohort
of patients with high cholesterol. We know that diet and genes
play a role here, but that drugs can help, too. We express this as

Cholesterol ⇠ Diet + Genes + Drugs .

Interpret the plus sign as the word “and,” not like formal addition:
we’re assuming that cholesterol depends upon diet, genes, and
drugs, although we haven’t said how. Of course, it’s that third
predictor in the model we care about; the first two, in addition to
some others that we haven’t listed, are potential confounders.

First, what not to do: don’t proceed by giving Zapaclot to all
the men and the old drug to all the women, or Zapaclot to all
the marathon runners and the old drug to the couch potatoes.
These highly non-random assignments would obviously bias any
judgment about the relative effect of the new drug compared to
the old one. We refer to this sort of thing as selection bias: that
is, any bias in the selection of cases that receive the treatment.
Moreover, you shouldn’t just give the new drug to whomever
wants it, or can afford it. The people with more engagement, more
knowledge, more money, or more trust in the medical system
would probably sign up in greater numbers—and if those people
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have systematic differences in diet or genes from the people who
don’t sign up, then you’ve just created a hidden selection bias.

Instead, you should two simple steps.

Randomize: randomly split the cohort into two groups, denoted the
treatment group and the control group.

Intervene: allocate everyone in the treatment group to take the
treatment (e.g. Zapaclot, the new drug), and everyone in the
control group to take something else (e.g. the old drug or a
placebo).3 3 Everyone in the control group should

be taking the same something else,
whether it’s the old drug or a placebo.Randomize and intervene: a simple prescription, but the surest

way to establish causality. The intervention allows you to pick up
a difference between the new and old drug, if there’s one to be
found. The randomization ensures that other factors—even un-
known factors, in addition to known ones like diet and lifestyle—
do not lead us astray in our causal reasoning. The Latin phrase
ceteris paribus, which translates roughly as “everything else being
equal,” is often used to describe such a situation. By randomizing
and intervening, we have ensured that the only systematic differ-
ence between the groups is the treatment itself. The randomization
gives us a balanced comparison.

This last point is crucial. It’s not that diet, genes, and other
lifestyle factors somehow stop affecting a patient’s cholesterol level
when we randomize and intervene. It’s just that diet, genes, and
lifestyle factors aren’t correlated with the treatment assignment,
and so they’re balanced between the two groups, on average.

The need to avoid selection bias sounds obvious. But if selection
bias in medical trials were not rigorously policed, then it would
be easy for doctors to cherry pick healthy patients for newly pro-
posed treatments. After all, a doctor who invents a new, seemingly
effective form of treatment will almost surely become both rich
and famous. As one physician reminisces:

One day when I was a junior medical student, a very impor-
tant Boston surgeon visited the school and delivered a great
treatise on a large number of patients who had undergone
successful operations for vascular reconstruction. At the end
of the lecture, a young student at the back of the room timidly
asked, “Do you have any controls?” Well, the great surgeon
drew himself up to his full height, hit the desk, and said, “Do
you mean did I not operate on half of the patients?” The hall
grew very quiet then. The voice at the back of the room very
hesitantly replied, “Yes, that’s what I had in mind.” Then the
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visitor’s fist really came down as he thundered, “Of course
not. That would have doomed half of them to their death.”
God, it was quiet then, and one could scarcely hear the small
voice ask, “Which half?”4 4 Dr. E. Peacock, University of Arizona.

Originally quoted in Medical World
News (September 1, 1972). Reprinted
pg. 144 of Beautiful Evidence, Edward
Tufte (Graphics Press, 2006).

These last two words—”Which half?"—should echo in your mind
whenever you are asked to judge the quality of evidence offered in
support of a causal hypothesis. There is simply no substitute for a
controlled experiment: not a booming authoritative voice, not even
fancy statistics.

In fact, government regulators are so fastidious in their atten-
tion to possible selection biases that, in most real clinical trials, nei-
ther the doctors nor the patients are allowed to know which drug
each person receives. Such a “double-blind” experiment avoids the
possibility that patients might simply imagine that the the latest
miracle drug has made them feel better, in a feat of unconscious
self-deception called the placebo effect. A placebo, from the Latin placere (“to

please”), is a fake treatment designed to
simulate the real one.

Some history

The notion of a controlled experiment was certainly around in pre-
Christian times. The first chapter of the book of Daniel relates the
tale of one such experiment. Daniel and his three friends Hana-
niah, Mishael, and Azariah arrive in the court of Nebuchadnezzar,
the King of Babylon. They enroll in a Babylonian school, and are
offered a traditional Babylonian diet. But Daniel wishes not to “de-
file himself with the portion of the king’s meat, nor with the wine
which he drank.” He goes to Melzar, the prince of the eunuchs,
who is in charge of the school. Daniel asks not to be made to eat
the meat or drink the wine. But Melzar responds that he fears for
Daniel’s health if he were to let them follow some crank new-age
diet. More to the point, Melzar observes, if the new students were
to fall ill, “then shall ye make me endanger my head to the king.”

So Daniel proposes a trial straight out of a statistics textbook:

Prove thy servants, I beseech thee, ten days; and let them give
us pulse to eat, and water to drink.

Then let our countenances be looked upon before thee, and
the countenance of the children that eat of the portion of
the king’s meat: and as thou seest, deal with thy servants.5 5 King James Bible, Daniel 1:12–13.

The King agreed. When Daniel and his friends were inspected
ten days later, “their countenances appeared fairer and fatter in
flesh” than all those who had eaten meat and drank wine. Suitably
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impressed, Nebuchadnezzar brings Daniel and his friends in for
an audience, and he finds that “in all matters of wisdom and un-
derstanding,” they were “ten times better than all the magicians
and astrologers that were in all his realm.”

As for a placebo-controlled trial, in which some of the patients
are intentionally given a useless treatment (the “placebo”): that
came much later.6 The first such trial seems to have taken place in 6 See “The Power of Nothing” in the

December 12, 2011 edition of The New
Yorker (pp. 30–6).

1784. It was directed by none other than Benjamin Franklin, the
American ambassador to the court of King Louis XVI of France.
A German doctor by the name of Franz Mesmer had gained some
degree of notoriety in Europe for his claim to have discovered
a new force of nature that he called “magnétisme animal,” and
which was said to have magical healing powers. The demand for
Dr. Mesmer’s services soon took off among the ladies of Parisian
high society, whom he would “Mesmerize” using a wild contrap-
tion involving ropes and magnetized iron rods.

Much to the king’s dismay, his own wife, Marie Antoinette,
was one of Mesmer’s keenest followers. The king found the whole
Mesmerizing thing frankly a bit dubious, and presumably wished
for his wife to have nothing to do with the Herr Doctor’s mag-
nétisme animal. So he convened several members of the French
Academy of Sciences to investigate whether Dr. Mesmer had in-
deed discovered a new force of nature. The panel included An-
toine Lavoisier, the father of modern chemistry, along with Joseph
Guillotin, whose own wild contraption was soon to put the King’s
difficulties with Mesmer into perspective. Under Ben Franklin’s
supervision, the scientists set up an experiment to replicate some
of Dr. Mesmer’s prescribed treatments, substituting non-magnetic
materials—history’s first placebo—for half of the patients. In many
cases, even the patients in the control group would flail about and
start talking in tongues anyway. The panel concluded that the
doctor’s method produced no effect other than in the patients’
own minds. Mesmer was denounced as a charlatan, although he
continues to exact his revenge via the dictionary.

A more recent and especially striking example of a placebo
comes from Thomas Freeman, director of the neural reconstruction
unit at Tampa General Hospital in Florida. Dr. Freeman performs
placebo brain surgery. (You read that correctly.) According to the
British Medical Journal,

In the placebo surgery that he performs, Dr Freeman bores
into a patient’s skull, but does not implant any of the fetal
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nerve cells being studied as a treatment for Parkinson’s dis-
ease. The theory is that such cells can regenerate brain cells
in patients with the disease. Some colleagues decry the ex-
perimental method, however, saying that it is too risky and
unethical, even though patients are told before the operation
that they may or may not receive the actual treatment.7 7 BMJ. 1999 October 9; 319(7215): 942

“There has been a virtual taboo of putting a patient through
an imitation surgery,” Dr. Freeman said. (Imagine that.) “This is
the way to start the discussion.” Freeman has performed 106 real
and placebo cell transplant operations since 1992. Dr. Freeman
argues that the medical history is littered with examples of unsafe
and ineffective surgical procedures—think of that small voice at
the back of the room, asking “which half?”—that were not tested
against a placebo and resulted in needless deaths, year after year,
before doctors abandoned them.

Experimental evidence is the best kind of evidence

Let’s practice here, by comparing two causal hypotheses arising
from two different data sets. The first comes from a clinical trial
in the 1980’s on a then-new form of adjuvant chemotherapy for
treating colorectal cancer, a dreadful disease that, as of 2015, has a
five-year survival rate of only 60-70% in the developed world.

The trial followed a simple protocol. After surgical removal
of their tumors, patients were randomly assigned to different
treatment regimes. Some patients were treated with fluorouracil
(the chemotherapy drug, also called 5-FU), while others received
no follow-up therapy. The researchers followed the patients for
many years afterwards and tracked which ones suffered from a
recurrence of colorectal cancer.

The outcome of the trial are in Table 11.1, below. Among the
patients who received chemotherapy, 39% (119/304) had relapsed
by the end of the study period, compared with 57% of patients
(177/315) in the group who received no therapy:

Chemotherapy? Yes No

Recurrence?
Yes 119 177
No 185 138

Table 11.1: Data from: J. A. Laurie
et. al. Surgical adjuvant therapy of
large-bowel carcinoma: An evaluation
of levamisole and the combination of
levamisole and fluorouracil. J. Clinical
Oncology, 7:1447–56, 1989. There was
also a third treatment arm of the study
in which patient received a drug called
levamisole, which isn’t discussed
here. Survival statistics on colorectal
cancer from Cunningham et. al (2010).
“Colorectal cancer.” Lancet 375 (9719):
1030–47.

The evidence strongly suggests that the chemotherapy reduced
the risk of recurrence by a substantial amount: the relative risk of
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a relapse under the treatment group is 0.7, with a 95% confidence
interval of (0.59, 0.83).

We can be confident that this evidence reflects causality, and
not merely correlation, because patients were randomly assigned
to the treatment and control groups. Randomization ensures bal-
ance: that is, it ensures that there are no systematic differences
between the two groups with respect to any confounding factors
that might be correlated with the patients’ survival chances. This
would obviously not be true if we had non-randomly assigned all
the healthiest patients to the treatment group, and all the sickest
patients to the control group.

It’s worth emphasizing a key fact here. Randomization ensures
balance both for the possible confounders that we can measure
(like a patient’s age or baseline health status), as well as for the
ones we might not be able to measure (like a patient’s will to live).
This is what makes randomization so powerful, and randomized
experiments so compelling. We don’t even have to know what the
possible confounding variables are in order for the experiment to
give us reliable information about the causal effect of the treat-
ment. Randomization balances everything, at least on average.

Next, let’s examine data from a study from the 1990’s con-
ducted in sub-Saharan Africa about HIV, another dreadful disease
which, at the time, was spreading across the continent with alarm-
ing speed. Several studies in Kenya had found that men who were
uncircumcised seemed to contract HIV in greater numbers. This
set off a debate among medical experts about the extent to which
this apparent association had a plausible biological explanation.

Circumcised? Yes No

HIV positive?
Yes 105 85
No 527 93

Table 11.2: Data from Tyndall et. al.
Increased risk of infection with hu-
man immunodeficiency virus type 1
among uncircumcised men presenting
with genital ulcer disease in Kenya.
Clin. Infect. Dis. 1996 Sep; 23(3):449–53.

Table 11.2, above, shows some data from one of these studies,
which found that among those recruited for the survey, 48% of
uncircumcised men were HIV-positive, versus only 17% of cir-
cumcised men. The evidence seems to suggest that circumcision
reduced a Kenyan man’s chance of contracting HIV by a factor of
3.

Evaluating the evidence. If you suffer from colon cancer, should
you get chemotherapy? Almost certainly: the researchers in the
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first study randomized and intervened, giving chemotherapy
only to a random subset of patients. Unless you believe that the
chemotherapy patients in this trial just happened to be much luck-
ier than their peers, this result establishes that the reduction in
recurrence must have been caused by the treatment.

But should all Kenyan men head straight to a surgeon? In this
case we can’t really be sure. The researchers in the second study
neither randomized nor performed any snipping themselves. They
merely asked whether each man was circumcised. It is therefore
possible that they’ve been fooled by a confounder. To give one
plausible example, a man’s religious affiliation might affect both
the likelihood that he is circumcised and the chances that he con-
tracts HIV from unprotected sex. If that were true, the observed
correlation between circumcisions and HIV rates might be simply
a byproduct of an imbalanced, unfair comparison, rather than a
causal relationship.8 8 The authors of the study were ob-

viously aware of these possible con-
founders. They used a technique called
logistic regression to attempt to account
for some them and isolate the putative
effect of circumcision on HIV infection.
This is like our fourth method for mak-
ing balanced comparisons: use a model
to adjust for confounders statistically.
See the original paper for details.

To summarize: a randomized, controlled experiment is the gold
standard of evidence for a causal hypothesis. Yet many times an
experiment is impossible, impractical, unethical, or too expensive
in time or money. In future chapters, we’ll consider some alter-
native strategies for understanding cause and effect that don’t
involve running an experiment.


