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The bootstrap

Bootstrapping: standard errors through resampling

At the core of the resampling approach to statistical inference lies
a simple idea. Most of the time, we can’t feasibly take repeated
samples of size n from the population, to see how our estimate
changes from one sample to the next. But we can repeatedly take
samples of size n from the sample itself, and apply our estimator
afresh to each notional sample. The idea is that the variability of
the estimates across all these samples can be used to approximate
our estimator’s true sampling distribution.

This process—pretending that our sample is the whole popula-
tion, and taking repeated samples of size n with replacement from
our original sample of size n—is called bootstrap resampling, or just
bootstrapping.1 Each block of n resampled data points is called a 1 The term “bootstrapping” is a

metaphor. It is an old-fashioned phrase
that means performing a complex task
starting from very limited resources.
Imagine trying to climb over a tall
fence. If you don’t have a rope, just
“pull yourself up by your own boot-
straps.”

bootstrapped sample. To bootstrap, we write a computer program
that repeatedly resamples our original sample and recomputes our
estimate for each bootstrapped sample. Modern software makes a
non-issue of the calculational tedium involved.

You may be puzzled by something here. There are n data points
in the original sample. If we repeatedly resample n data points
from our “pseudo-population” of size n, won’t each bootstrapped
sample be identical to the original sample? If so, and every boot-
strapped sample looks the same, then how can this process be
used to simulate sampling variability?

This fact highlights a key requirement of bootstrapping: the re-
sampling must be done with replacement from the original sample,
so that each bootstrapped sample contains duplicates and omis-
sions from the original sample.2 These duplicates and omissions

2 Imagine a lottery drawing, where
there’s a big urn with 60 numbered
balls in it. We want to choose a random
sample of 6 numbers from the urn.
After we choose a ball, we could do one
of two things: 1) put the ball to the side,
or 2) record the number on the ball
and then throw it back into the urn. If
you set the ball aside, it can be selected
only once; this is sampling without
replacement, and it’s what happens in
a real lottery. But if instead you put the
ball back into the urn, it has a chance
of being selected more than once in
the final sample; this is sampling with
replacement, and it’s what we do when
we bootstrap.

induce variation from one bootstrapped sample to the next, mim-
icking the variation you’d expect to see across the real repeated
samples that you can’t take.

To summarize, let’s say we have a data set D, consisting of n
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Figure 10.1: A stylized depiction of a
bootstrapped sampling distribution of
an estimator q̂. We have a single origi-
nal sample. We repeatedly take many
bootstrapped samples (say, 1000) from
the original sample (step 1a). For each
resample, we compute the estimator
q̂ (step 1b). At the end, we combine
all the estimates q̂(1), . . . , q̂(1000) into a
histogram of the bootstrapped sampling
distribution, and we summarize the
dispersion of that histogram (step 2).
Compare with Figure 8.3.

cases. We want to understand how our estimator q̂ might have
behaved differently with a different sample of size n. To answer
this question using bootstrapping, we follow two main steps.

(1) Repeat the following substeps many times (e.g. 1000 or more):

a. Generate a new bootstrapped sample D(r) by taking n
samples with replacement from D.

b. Apply the estimator q̂ to the bootstrapped sample D(r) and
save the resulting estimate, q̂(r).

(2) Take all of the q̂(r)’s you’ve generated and make a histogram.
This is your estimate of the sampling distribution.

See Figure 10.1, and compare with Figure 8.3.
Resampling won’t yield the true sampling distribution of an

estimator, but it is often good enough for approximating the stan-
dard error (which you’ll remember is just the standard deviation
of the sampling distribution). We use the term bootstrapped stan-
dard error for the standard deviation of the bootstrapped sampling
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distribution. The bootstrapped standard error is an estimate of the
true standard error.

The quality of this estimate depends almost entirely on one
thing: how closely the original sample resembles the wider popu-
lation. This is a question of judgment best answered by someone
with subject-area expertise relevant to the data set at hand. As a
data analyst this often isn’t under your control, and therefore it’s
almost worth remember that the bootstrap is not entirely free of
assumptions. You can’t magic your way to sensible estimates of
the true sampling distribution by bootstrapping a biased, woefully
small, or otherwise poor sample.

The quality of the Monte Carlo approximation also depends to
a lesser extent on how many bootstrapped samples you take from
the original sample. Simulating more bootstrapped samples help
to reduce the variability inherent in any Monte Carlo simulation—
up to a point. But taking more bootstrapped samples is never a
substitute for having more actual samples in the real data set.
Fundamentally, it is the size of your original sample that governs
the precision of your estimates.

A natural question is: how well does bootstrapping work in
practice? To see the procedure in action, let’s reconsider the least-
squares estimator of the slope (b1) for the weight–volume line
describing the fish in our hypothetical lake. The top row of Figure
10.2 shows three actual sampling distributions, corresponding to
samples of size n = 15, n = 50, and n = 100 from the entire pop-
ulation. These were constructed using the Monte Carlo method
described several pages ago, as depicted in Figures 8.2 and 8.3. For
example, the top left panel (for n = 15) was constructed by tak-
ing 2,500 Monte Carlo samples from the true population in Figure
8.2, and computing the least-squares estimate of the slope for each
sample as in Figure 8.3.

Below each true sampling distribution, we have focused on four
of these 2500 samples. For each of these real samples, we ran the
bootstrapping procedure by 2500 bootstrapped samples from the
original sample of size n, treating it as a pseudo-population. For
each bootstrapped sample, we compute the least-squares line for
weight versus volume. These 2500 estimates of b1 are what you
see in each grey-colored panel of Figure 10.2. For example, the first
grey panel in column 1 corresponds to the bootstrapped sampling
distribution from the first sample of size 15; the second grey panel
corresponds to the bootstrapped sampling distribution from the
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Figure 10.2: Actual (top, in orange)
and bootstrapped sampling distribu-
tions (four replications) for the least-
squares estimator of b1 from Figure
8.1.
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second sample of size 15; and so on for the rest of the grey panels.
If bootstrapping were perfect, each grey panel would look ex-

actly like the corresponding orange panel above, regardless of the
same size. But of course, bootstrapping isn’t perfect. If you study
these pictures closely, you’ll notice a few things.

(1) The bootstrapped sampling distribution can differ sub-
stantially from one original sample to the next (top to
bottom). The sample-to-sample differences are larger
when the original sample size is small.

(2) The bootstrapped sampling distribution gets both closer
to the truth, and less variable from one original sample
to the next, as the original sample size gets larger.

(3) The bootstrapped standard errors (printed next to each
histogram) are often closer to the true standard error
than you might naïvely expect, based on the visual corre-
spondence of the bootstrapped sampling distribution to
the true one.

Confidence intervals and coverage

Now that we’ve learned to approximate an estimator’s sampling
distribution via bootstrapping, what do we do with this informa-
tion? The answer is: we quantify the uncertainty of our estimate
via a confidence interval: a range of plausible values for the true
value of a parameter, together with an associated confidence level
between 0% and 100%. The width of a confidence interval conveys
the precision with which the data have allowed you to estimate
the underlying population parameter. If your interval actually
contains the true population value, we say that the interval covers
the truth. If it doesn’t, the interval fails to cover the truth. In real
life, you won’t know whether your interval covers. The confidence
level expresses how confident you are that it actually does.

There are many ways of generating confidence intervals from
bootstrapped sampling distributions, ranging from the simple
to the highly sophisticated (and mathematically daunting). We’ll
focus on two simple ways here, with the understanding that the
more technical ways we don’t discuss are a bit more accurate.3

3 If you want to get an introduction
to the more technical ways of getting
confidence intervals from the bootstrap,
see the following article: “Bootstrap
confidence intervals: when, which,
what? A practical guide for medical
statisticians.” James Carpenter and
John Bithell. Statistics in Medicine 2000;
19:1141–64.First, there’s the basic standard-error method. Here, you quote

a symmetric error bar centered on the estimate from the origi-
nal sample, plus-or-minus some multiple k of the bootstrapped
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Estimates of !1 from Bootstrapped Samples
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Figure 10.3: The estimated sampling
distribution of b̂1 that arises from
bootstrapping one sample of size 30
from the full fish population. The blue
area reflects an 80% confidence interval
generated by the coverage method, with
symmetric tail areas of 10% above and
10% below the blue area.

standard error. To be precise, let’s say that q is some population
parameter you’re trying to estimate; that q̂ is the estimate of q gen-
erated by your actual sample; and that you’ve run the bootstrap-
ping procedure on your sample and found that the bootstrapped
standard error is ŝ. Your confidence interval would then be

q 2 q̂ ± t?ŝ ,

where t? is a chosen multiple. This number t? is called the critical
value. It is the number of standard errors you must go out from the
center to capture a certain percentage of the sampling distribution.
Typical values are t? = 1 (for an approximate 68% confidence
interval) and t? = 2 (for an approximate 95% confidence interval).

The answer to the question of why t? = 1 corresponds to 68%
and t? = 2 to 95% is beyond the scope of this chapter. It has to do
with the normal distribution and something called the central limit
theorem. For now, it is fine if you accept this is an empirical rule
of thumb that statisticians have found gives a good approxima-
tion in situations where your bootstrapped sampling distribution
looks approximately bell-shaped. Some of the more sophisticated
bootstrap techniques, mentioned in Footnote 3, are focused on
improving the choice of t? given by these simple guidelines.

Second, there’s the coverage-interval method, in which you
simply calculate a coverage interval using the quantiles of your
bootstrapped sampling distribution. For example, Figure 10.3
shows the bootstrapped sampling distribution for the slope of the
weight–volume relationship arising from a single sample of 30 fish
from the same lake as before. If you wanted to compute an 80%
confidence interval based on this data, you would calculate the
10th and 90th percentiles of this histogram, giving you an interval
that contains 80% of the bootstrapped estimates of the slope. In
Figure 10.3, this interval is (3.8, 5.1), shown in blue. This example
highlights that, unlike the intervals generated by the standard-
error method, the intervals generated by the coverage method
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need not be symmetric about the estimate q̂ derived from your
actual sample.

Is one of these two methods better? Not as a general rule. The
coverage-interval approach is more common in practice, and it’s a
fine default option. It’s what we’ll use throughout the course, and
this book.

What does “confidence” mean?

The word “confidence,” as it is used in the phrase “confidence
interval,” has a notoriously tricky interpretation. To put it con-
cisely but opaqely, confidence intervals are intervals generated by
a method that satisfies the frequentist coverage principle.

The frequentist coverage principle: If you were to analyze one
data set after another for the rest of your life, and you were to
quote X% confidence intervals for every estimate you made,
those intervals should cover their corresponding true values
at least X% of the time. Here X can be any number between 0
and 100.

Let’s unpack this a bit. Imagine that your interval was gener-
ated with a procedure that, under repeated use on one sample
after the next, tends to yield intervals that cover the true value
with a relative frequency of at least 80%. Then, and only then,
may you claim a bona fide 80% confidence level for your specific
interval. (You may, of course, aim for whatever coverage level you
wish in lieu of 80%. Many people seem stuck on 95%, but it’s en-
tirely your choice.) Thus confidence intervals involve something
of a bait-and-switch: they purport to answer a question about an
individual interval, but instead give you information about some
hypothetical assembly line that could be used to generate a whole
batch of intervals. Nonetheless, there is an appealing “truth in ad-
vertising” property at play here: that if you’re going to claim 80%
confidence, you should be right 80% of the time over the long run.
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!1Figure 10.4: 100 different samples of
size 30 from the population in Figure
8.1, along with each least-squares
estimate of the weight–volume slope,
and an 80% bootstrapped confidence
interval, just like that at the top left.
Blue dots show confidence intervals
that cover; red crosses show those that
don’t.

An obvious question is: do bootstrapped confidence intervals
satisfy the frequentist coverage property? If your sample is fairly
representative of the population, then the answer is a qualified yes.
That is, the bootstrapping procedure yields nominal X% intervals
that cover the true value “approximately” X% of the time. More-
over, as the size of the original sample gets bigger, the quality of
the approximation gets better. Alas, it is necessary to appeal to
some very advanced probability theory to put both of these claims
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on firm footing. (This is best deferred to another, much more ad-
vanced book. For those that like fancy math, the relevant branch of
probability theory is called empirical-process theory, which part of
a wider area called stochastic processes.)

For our purposes, it is better to show the procedure in action.
Figure 10.4, for example, depicts the results of running 100,000
regressions—1,000 bootstrapped samples for each of 100 different
real samples from the population in Figure 8.1. The vertical black
line shows the true population value of the weight–volume slope
(b1 = 4.24) for our population of fish. Each row corresponds to a
different actual sample of size n = 30 from the population. Dots
and crosses indicate the least-squares estimate of the slope arising
from that sample, while the grey bars show the corresponding
80% bootstrapped confidence intervals generated by the coverage
method (just like the blue region in Figure 10.3).

The nominal confidence level of 80% for each individual inter-
val must be construed as a claim about the whole ensemble of 100
intervals: 80% should cover, 20% shouldn’t. In fact, 83 of these
intervals cover and 17 don’t, so the claim is approximately correct.


