9
Dummy variables

Models for a single grouping variable

Dummy variables

LET’s consider a simple scenario where we have numerical data
that falls into two groups, and we want to compare the variation
between the groups. The dotplot in Figure 9.1 shows the weekly
sales volume of package sliced cheese over 61 weeks at a Dallas-
area Kroger’s grocery store. In 38 of these weeks, the store set up
a prominent display near the entrance, calling shoppers” attention
to the various culinary adventures they might undertake with the
cheese. The data show that, in these 38 weeks, sales were higher
overall than when no display was present.

How much higher? The average sales volume in display weeks
was 5,577 units (the blue dotted line in Figure 9.1), versus an aver-
age of 2341 units in non-display weeks (the red dotted line). Thus
sales were 3236 units higher in the display weeks. This difference
is depicted in Figure 9.1 as the difference or offset between the
dotted lines.

This example emphasizes that in many data sets, we care less
about the absolute magnitude of a response under different con-
ditions, and more about the differences between those conditions.
We therefore often build our model in such a way that these differ-
ences are estimated directly, rather than indirectly (i.e. by calculat-
ing means and then subtracting them).

We do this using indicator or dummy variables. To understand
this idea, take the simple case of a single grouping variable x with
two levels: “on” (x = 1) and “off” (x = 0). We can write this
model in “baseline/offset” form:

yi = Po+ Pili=1) e

The quantity 1;,,_1; is called a dummy variable; it takes the value
1 when x; = 1, and the value o otherwise. Just as in an ordinary
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Figure 9.1: Weekly sales of packaged
cheese slices at a Dallas-area Kroger’s
grocery store, both with and without
the presence of an in-store display ad
for the cheese. The red dot shows the
mean of the no-display weeks, and the
blue dot shows the mean of the with-
display weeks. The estimated coefficient
for the dummy variable that encodes
the presence of a display ad is 3236,
which is the vertical distance between
the two dots.
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linear model, we call By and B the coefficients of the model. This
way of expressing the model implies the following.

Group mean for case where x is off = o

Group mean for case where xison = o+ ;.

Therefore, we can think of By as the baseline (or intercept), and B
as the offset. To see this in action, consult Figure 9.1 again. Here
the dummy variable encodes the presence of an in-store display.
The red dot at 2341, in the non-display weeks, is B¢. This is the
baseline case, when the dummy variable x is “off.” The coefficient
for the dummy variable, 81 = 3236, is the vertical distance between
the two means. Thus if we wanted to reconstruct the mean for the
with-display weeks, we would just add the baseline and the offset,
to arrive at 2341 + 3236 = 5577, where the blue dot sits.

As before, we estimate the values of By and 1 using the least-
squares criterion: that is, make the sum of squared errors, Y/ ; eiz,
as small as possible. This is mathematically equivalent to com-
puting the group-wise means separately, and then calculating the
difference between the means.

More than two levels

If the categorical predictor x has more than two levels, we repre-
sent it in terms of more than one dummy variable. Suppose that x
can take three levels, labeled arbitrarily as 0 through 2. Then our
model is

1 2
yi=po+ ﬁ§ )1{xi:1} + ﬁi )1{x,»:2} +e;.
The dummy variables 1;, _;y and 1y,._», tell you which of the

levels is active for the ith case in the data set.* * Normal people count starting at 1.

Therefore you might find it strange that
(k). o ’ - we start counting levels of a categorical

levels. Then B;" is the coefficient associated with the kth level of variable at o. The rationale here is that

More generally, suppose we have a grouping variable with K

the grouping variable, and we write the full model as a sum of this makes the notation for group-
wise models a lot cleaner compared to

starting at 1.

K — 1 dummy-variable effects, like this:

K-1 )
yi=Bo+ Y By lyx—i e (9-1)
k=1

We call this a group-wise model. Notice that there is no dummy
variable for the case x = 0. This is the baseline level, whose group
mean is the intercept By. In general, for a categorical variable
with K levels, we will need K — 1 dummy variables, and at most
one of these K — 1 dummy variables is ever active for a single



DUMMY VARIABLES 89

Weekly cheese sales at 11 Kroger's stores
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Figure 9.2: Weekly sales of packaged
cheese slices during weeks with an

observation. The coefficient on each dummy variable (ﬁgk)) is the advertising display at 11 Kroger’s

. . t th try.
differences between the baseline and the mean of group k: grocery stores actoss The country

Group mean for case where (x; =0) = o

Group mean for case where (x; =k) = S+ ﬁgk) .

In Figure 9.2, we see an example of a single categorical variable
with more than two levels. The figure shows weekly cheese sales
(during display-present weeks only) at 11 different Kroger stores
in 11 different markets across the country. The grouping vari-
able here is the market: Atlanta, Birmingham, Cincinnati, and so
forth. If we fit a model like Equation 9.1 to the data in this figure,
choosing Atlanta to be the baseline, we get the set of estimated co-
efficients in the second column (“Coefficient”) of the table below:

Atlanta is the baseline, and so the intercept is the group mean
for Atlanta: 5796 packages of crappy cheese. To get the group
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Variable Coefficient Group mean

Intercept 5796 —
Birmingham -3864 1932
Cincinnati 427 6223
Columbus -543 5253
Dallas -219 5577
Detroit 400 6196
Houston 4459 10255
Indianapolis -1542 4254
Louisville -2409 3387
Nashville -1838 3958
Roanoke -717 5079

mean for an individual market, we add that market’s offset to the
baseline. For example, the mean weekly sales volume in Houston
is 5796 + 4459 = 10255 units. Group mean = baseline + offset.

The figure also shows you two of the offsets as arrows, to give
you a visual sense of what these numbers in the above table repre-
sent. The coefficient for Houston is ,356) = 4459, because the group
mean for Houston (10255) is 4459 units higher than the baseline
group mean for Atlanta (a positive offset). Similarly, the coeffi-
cient for Birmingham is ,Bgl) = —3864, because the group mean
for Birmingham (1932) is 3864 units lower than the baseline group
mean for Atlanta (a negative offset).

The choice of baseline. In the above analysis, we chose Atlanta as
the baseline level of the grouping variable. This was arbitrary.
We could have chosen any city as a baseline, measuring the other
cities as offsets from there instead.

A natural question is: does the model change depending on
what level of the grouping variable we choose to call the baseline?
The answer is: yes and no. Yes, the estimated model coefficients
will change when a different baseline is used; but no, the under-
lying group means do not change. To see this, consider what hap-
pens when we fit another model like Equation 9.1 to the Kroger
cheese-sales data, now choosing the Dallas store to be the baseline:

The intercept is the Dallas group mean of 5577, and the other
market-level coefficients have changed from the previous table,
since these now represent offsets compared to a different baseline.
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Variable Coefficient Group mean

Intercept 5577 —
Atlanta 219 5796
Birmingham -3644 1932
Cincinnati 646 6223
Columbus -324 5253
Detroit 619 6196
Houston 4678 10255
Indianapolis -1323 4254
Louisville -2190 3387
Nashville -1619 3958
Roanoke -498 5079

But the group means themselves do not change. The moral of the
story is that the coefficients in a model involving dummy variables
do depend upon the choice of baseline, but that the information
these coefficients encode—the means of the underlying groups—
does not. Different choices of the baseline just lead to different
ways of expressing this information.



