6
Fitting straight lines

You can go pretty far in data science using relatively simple visual
and numerical summaries of data sets—tables, scatter plots, bar
plots, line graphs, boxplots, histograms, and so on. But in many
cases we will want to go further, by fitting an explicit equation—
usually called a regression model—that describes how one variable
changes as a function of some other variables. There are many
reasons we might want to do this. Here are three that we’ll explore
in detail:

¢ to make a prediction;

® to summarize the trend in a data set;

* to make comparisons that adjust statistically for some sys-

tematic effect.

This chapter introduces the idea of a regression model and builds
upon these themes.

Fitting straight lines

As a running example we’ll use the data from Figure 6.1, which
depicts a sample of 104 restaurants in the vicinity of downtown
Austin, Texas. The horizontal axis shows the restaurant’s “food
deliciousness” rating on a scale of o to 10, as judged by the writers
of a popular guide book entitled Fearless Critic: Austin. The vertical
axis shows the typical price of a meal for one at that restaurant, in-
cluding tax, tip, and drinks. The line superimposed on the scatter
plot captures the overall “bottom-left to upper-right” trend in the
data, in the form of an equation: in this case, y = —6.2 4+ 7.9x. On
average, it appears that people pay more for tastier food.

This is our first of many data sets where the response (price,
Y) and predictor (food score, X) can be described by a linear
regression model. We write the model in two parts as “Y =
Bo + B1X + error.” The first part, the function By + $1X, is called
the fitted value: it’s what our equation “expects” Y to be, given X.
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The second part, the error, is a crucial part of the model, too, since
no line will fit the data perfectly. In fact, we usually denote each
individual noise term explicitly:

yi = Bo+ B1x; +e;. (6.1)

Here the subscript i is just an index to denote which data point
we're talking about: i = 1 for the first row of our data frame, i = 9
for the gth, and so on.

An equation like (6.1) is our first example of a regression model.
The intercept B and the slope B1 are called the parameters of the
regression model. They provide a mathematical description of how
price changes as a function of food score. The little ¢; is called the
error or the residual for the ith case—residual, because it’s how
much the line misses the ith case by (in the vertical direction). The
residual is also a fundamental part of the regression model: it’s
what’s “left over” in y after accounting for the contribution of x.

For every two points. . . .

A natural question is: how do we fit the parameters By and

to the observed data? Historically, the standard approach, still in
widespread use today, is to use the method of least squares. This
involves choosing Bg and B so that the sum of squared residuals

Figure 6.1: Price versus reviewer food
rating for a sample of 104 restaurants
near downtown Austin, Texas. The
data are from a larger sample of 317
restaurants from across greater Austin,
but downtown-area restaurants were
chosen to hold location relatively
constant. Data from Austin Fearless
Critic, www. fearlesscritic.com/
austin. Because of ties in the data,

a small vertical jitter was added for
plotting purposes only. The equation of
the line drawn here is y = —6.2 4+ 7.9x.


www.fearlesscritic.com/austin
www.fearlesscritic.com/austin

(the ¢;’s) will be as small as possible. This is what we did to get the
equation y; = —6.2 + 7.9x; in Figure 6.1.

The method of least squares is one of those ideas that, once
you’ve encountered it, seems beautifully simple, almost to the
point of being obvious. But it’s worth pausing to consider its his-
torical origins, for it was far from obvious to a large number of
very bright 18th-century scientists.

To see the issue, consider the following three simple data sets.
Each has only two observations, and therefore little controversy
about the best-fitting linear trend.
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For every two points, a line. If life were always this simple, there
would be no need for statistics.
But things are more complicated if we observe three points.

= po+1p1
= Po+5p1
= po+7h

Two unknowns, three equations. There is no solution for the pa-
rameters Bp and B; that satisfies all three equations—and therefore
no perfectly fitting linear trend exists. Seen graphically, at right, it
is clear that no line can pass through all three points.

Abstracting a bit, the key issue here is the following: how are
we to combine inconsistent observations? Any two points are con-
sistent with a unique line. But three points usually won’t be, and
most interesting data sets have far more than three data points.

Therefore, if we want to fit a line to the data anyway, we must
allow the line to miss by a little bit for each (x;,y;) pair. We ex-
press these small misses mathematically, as follows:

Bo+1B1+ e
4 = Po+5B1+e
= Po+7B1+es.
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The three little ¢’s are the residuals, or misses.

But now we’ve created a different predicament. Before we
added the ¢;’s to give us some wiggle room, there was no solution
to our system of linear equations. Now we have three equations
and five unknowns: an intercept, a slope, and three residuals. This
system has infinitely many solutions. How are we to choose, for
example, among the three lines in Figure 6.2? When we change
the parameters of the line, we change the residuals, thereby redis-
tributing the errors among the different points. How can this be
done sensibly?

Believe it or not, scientists of the 1700’s struggled mightily with
this question. Many of the central scientific problems of this era
concerned the combination of astronomical or geophysical obser-
vations. Astronomy in particular was a hugely important subject
for the major naval powers of the day, since their ships all navi-
gated usings maps, the stars, the sun, and the moon. Indeed, until
the invention of a clock that would work on the deck of a ship
rolling to and fro with the ocean’s waves, the most practical way
for a ship’s navigator to establish his longitude was to use a lu-
nar table. This table charted the position of the moon against the
“fixed” heavens above, and could be used in a roundabout fashion
to compute longitude. These lunar tables were compiled by fitting
an equation to observations of the moon’s orbit.

The same problem of fitting astronomical orbits arose in a wide
variety of situations. Many proposals for actually fitting the equa-
tion to the data were floated, some by very eminent mathemati-
cians. Leonhard Euler, for example, proposed a method for fitting
lines to observations of Saturn and Jupiter that history largely
judges to be a failure.

10

Figure 6.2: Three possible straight-
line fits, each involving an attempt
to distribute the “errors” among the
observations.
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In fact, some thinkers of this period disputed that it was even
a good idea to combine observations at all. Their reasoning was,
roughly, that the “bad” observations in your sample would corrupt
the “good” ones, resulting in an inferior final answer. To borrow
the phrase of Stephen Stigler, an historian of statistics, the “decep-
tively simple concept” that combining observations would improve
accuracy, not compromise it, was very slow to catch on during the
eighteenth century.” * The History of Statistics, p. 15.

The method of least squares

No standard method for fitting straight lines to data emerged until
the early 1800’s, half a century after scientists first entertained

the idea of combining observations. What changed things was

the method of least squares, independently invented by two people.
Legendre was the first person to publish the method, in 1805,
although Gauss claimed to have been using it as early as 1794.

The term “method of least squares” is a direct translation of
Legendre’s phrase “méthode des moindres carrés.” The idea is
simple: choose the parameters of the regression line that minimize

" , 2, the sum of the squared residuals. As Legendre put it:

In most investigations where the object is to deduce the most
accurate possible results from observational measurements,
we are led to a system of equations of the form

E=a+bx+cy+ fz+ &c,

in which 4, b, ¢, f, &c. are known coefficients, varying from
one equation to the other, and x, y, z, &c. are unknown quan-
tities, to be determined by the condition that each value of E
is reduced either to zero, or to a very small quantity. . . .

Of all the principles that can be proposed for this purpose,
I think there is none more general, more exact, or easier to
apply, than that which we have used in this work; it consists
of making the sum of the squares of the errors a minimum. By
this method, a kind of equilibrium is established among the
errors which, since it prevents the extremes from dominating,
is appropriate for revealing the state of the system which most

nearly approaches the truth.? ? Adrien-Marie Legendre (1805), Nou-
velles méthodes pour la détermination des
orbites des cometes. Translation p. 13,

The utility of Legendre’s suggestion was immediately obvi- Stigler’s A History of Statistics.

ous to his fellow scientists and mathematicians. Very rapidly,
least squares became the dominant method for fitting equations
throughout the European scientific community.



66 DATA SCIENCE

Why was the principle adopted so quickly and comprehen-
sively? For one thing, it offered the attractiveness of a single best
answer, evaluated according to a specific, measurable criterion.
This gave the procedure the appearance of objectivity—especially
compared with previous proposals, many of which essentially
amounted to: “muddle around with the residuals until you get an
acceptable balance of errors among the points in your sample.”

Moreover, unlike many previous proposals for combining ob-
servations, the least-squares criterion could actually be applied to
non-trivially large problems. One of the many advantages of the
least-squares idea is that it leads immediately from grand pr1nc1ple
to specific instructions on how to compute the estimate ( /30, ﬁl)

n - _
g iz1(%i — ) (yi — 7)
= 6.2
131 Z?:l(xi _)?>2 ( )
EO = j- ‘B\lf ) 6.3) In statistics, a little hat on top of some-

thing usually denotes a guess or an
estimate of the thing wearing the hat.

where ¥ and 7 are the sample means of the X and Y variables,

respectively. The line y = By + B1x is the best possible linear fit to

the data, in a squared-error sense. That is to say: among the family

of all possible straight-line fits to the data, this particular line

has the smallest sum of squared residuals. Deriving this solution

involves solving a simple mathematical problem involving some

calculus and matrix algebra. This is something that scientists of

the nineteenth century could do via pen and paper—and that,

happily, modern computers take care of for us nowadays.

Goals of regression analysis

THE estimation of linear regression models by least squares is now
entirely automatic using standard software for all but the very

largest of data sets.3 It’s so ordinary, in fact, that the method is 3 By “very largest,” think: every search
often abbreviated as OLS: ordinary least squares. that Google has every recorded, every
, . .. . post in the history of Facebook, and so

But don't let the simplicity of the model-fitting step fool you: forth. It's still possible to fit regression
regression modeling is a wonderfully rich and complex subject. models to those data sets, but doing so

is far from automatic—and possessing
the expertise necessary to do so is a
regression model. Each is useful for a different purpose. large part of what makes the major Sil-
icon Valley companies so extraordinary
(and so valuable).

We'll start by focusing on four kinds of stories one can tell with a
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LEAST SQUARES THEN AND NOW: AN HISTORICAL ASIDE

The Ordnance Survey is the governmental body in the United Kingdom charged with mapping and sur-
veying the British Isles. “Ordnance” is a curious name for a map-making body, but it has its roots in the
military campaigns of the 1700’s. The name just stuck, despite the fact that these days, most of the folks
that use Ordnance Survey maps are hikers and bikers.
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In the days before satellites and computers, map-making was a grueling job, both on the soles of your

feet and on the pads of your fingers. Cartographers basically walked and took notes, and walked and took
notes, ad infinitum. In the 1819 survey, for example, the lead cartographer, Major Thomas Colby, endured
a 22-day stretch where he walked 586 miles—that’s 28 miles per day, all in the name of precision cartogra-
phy. Of course, that was just the walking. Then the surveyors would have to go back home and crunch the
numbers that allowed them to calculate a consistent set of elevations, so that they could correctly specify
the contours on their maps.

They did the number-crunching, moreover, by hand. This is a task that would make most of us weep at
the drudgery. In the 1858 survey, for example, the main effort involved reducing an enormous mass of
elevation data to a system of 1554 linear equations involving 920 unknown variables, which the Ord-
nance Survey mathematicians solved using the principle of least squares. To crunch their numbers, they
hired two teams of dozens of human computers each, and had them work in duplicate to check each other’s
mistakes. It took them two and a half years to reach a solution.

A cheap laptop computer bought today takes a second or less to solve the same problem.

67
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Figure 6.3: Using a regression model
for plug-in prediction of the price of a
Story 1: A regression model is a plug-in prediction machine. meal, assuming a food rating of 7.5.

One way to interpret a regression model is as is a function § =
f(x) that maps inputs (x) to expected outputs (7). When we plug
in the original x values in to the least-squares equation, we get
back the so-called fitted values, or model values, denoted 7;:

9i = Bo + xip1 - (6.4)

In this way, the regression model partitions each observed y value
into two pieces: y; = #J; + ¢;, a fitted value plus a residual.

This is especially useful forecasting the response of a new case,
where we know the value of the predictor but not the response.
Specifically, if we see a new observation x* and want to predict
where the corresponding y* will be, we can simply plug in x* and
read off our guess for y* from the line: §* = By + x*B.

For example, if we know that a new restaurant earned a food
rating of 7.5, our best guess for the cost of the meal—knowing
nothing else about the restaurant—would be to use the linear
predictor: §* = —6.2+7.9-7.5, or $53.05 per person. (See Figure
6.3). This, incidentally, is where the name regression comes from:
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we expect that future y’s will “regress to the mean” specified by
the linear predictor.

Story 2: A regression model summarizes the trend in the data.

The linear predictor tells you how Y changes, on average, as a
function of X. In particular, the slope B; tells you how the re-
sponse tends to change as a function of the predictor:

AY

p1= AX '
read “delta-Y over delta-X,” or “change in Y over change in X.”
For the line drawn in Figure 6.1, the slope is f; = 7.9. On average,
then, one extra Fearless Critic food rating point (AX) is associated
with an average increase of $7.90 (AY) in the price of a meal. The
slope is always measured in units of Y per units of X—in this case,
dollars per rating point. It is often called the coefficient of X.

To interpret the intercept, try plugging in x; = 0 into the re-
gression model and notice what you get for the linear predictor:
Bo + B1 - 0 = Bo. This tells you that the intercept By is what we’d
expect from the response if the predictor were exactly 0.

Figure 6.4: The slope of a regression
model summarizes how fast the Y
variable changes, as a function of X.

Generally we use a capital letter when
referring generically to the predictor
or response variable, and a lower-case
letter when referring to a specific value
taken on by either one.
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Sometimes the intercept is easily interpretable, and sometimes
it isn’t. Take the trend line in Figure 6.1, where the intercept is
Bo = —6.2. This implies that a restaurant with a Fearless Critic
food rating of x = 0 would charge, on average, y = —%$6.20 for the
privilege of serving you a meal.

Perhaps the diners at such an appalling restaurant would feel
this is fair value. But a negative price is obvious nonsense. Plug-
ging in x = 0 to the price/rating model and trying to interpret the
result is a good example of why extrapolation—using a regression
model to forecast far outside the bounds of past experience—can
give silly results.

Story 3: A regression model takes the X-ness out of Y.

“Taking the X-ness out of Y” a bit of a weird phrase. But we like it
for a good reason; bear with us.

We’ve seen how a regression model splits up every observation
in the sample into two pieces, a fitted value (By + B1%;) and a
residual (e;):

Observed y value = (Fitted value) + (Residual), (6.5)
or equivalently,
Residual = (Observed y value) — (Fitted value).

The residuals from a regression model are sometimes called
“errors.” This is especially true in experimental science, where
measurements of some Y variable will be taken at different val-
ues of the X variable (called design points), and where noisy
measurement instruments can introduce random errors into the
observations.

But in many cases this interpretation of a residual as an error
can be misleading. A regression model can still give a nonzero
residual, even if there is no mistake in the measurement of the Y
variable. It’s often far more illuminating to think of the residual
as the part of the Y variable that it is left unpredicted by X—more
like an error in our model, rather than an error in our measure-
ment.

In Figure 6.1, for example, the positive slope of the line says:
yes, people generally pay more for tastier food. The residuals say:
not always. There are many other factors affecting the price of a
restaurant meal in Austin: location, service, decor, drinks, the like-
lihood that Matthew McConaughey will be eating overpriced tacos
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Figure 6.5: Left: the original data on
price versus food rating. Right: the
in the next booth, and so forth. Our simple model of price versus residuals from the least squares fit on
the left. The residual for Franklin BBQ
is the length of the dotted vertical line:
A good way of summarizing this is that the regression model e; = —$53.85.

food rating collapses all of these other factors into the residuals.

“takes the X-ness out of Y,” leaving what remains in the residual
e;.
Yi =  potpixi + ej.
~— —— ~—
Observed y value Predictable by x Unpredictable by x

This is easily seen in our example by plotting the residual price

(e;) against food rating (x;), side by side with the original data,

as in Figure 6.5. In the right panel, there is no evident correlation
between food rating and the residuals. This should always be true:
a good regression model should “take the X-ness out of Y,” so that
the residuals look independent of X. If they don’t, then the model
hasn’t done its job and we need a different model.

You've just seen your first example of statistical adjustment. No-
tice the red dot sitting in the lower right of Figure 6.5, with a low
price and a high food rating? This isn’t the least expensive restau-
rant near downtown Austin in an absolute sense. But it is the least
expensive after we adjust for food rating. To do this, we simply sub-
tract off the fitted value from the observed value of y, leaving the
residual—which, you'll recall, captures what’s over in the response
(price) after the predictor (food score) has been taken into account.
The restaurant in question has a food rating of 9.5, good for Fear-
less Critic’s third best score in the entire city. For such delicious
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food, you would expect to pay §* = —6.2+7.9-9.5, or $68.85
per person. In reality, the price of a meal at this restaurant is a
mere $15, or ¢; = —$53.85 less than expected. That’s the largest, in
absolute value, of all the negative residuals.

This restaurant is Franklin Barbecue, declared “Best Barbecue
in America” by Bon Appétit magazine, and widely regarded as the
most delicious residual in the city:

Go to Austin and queue up at Franklin Barbecue by 10:30 a.m.
When you get to the counter, Aaron Franklin will be waiting,
knife in hand, ready to slice up his brisket. (Order the fatty
end.) Grab a table, a few beers, and lots of napkins and dig
in. Take a bite, and don’t tell me you're not convinced you've
reached the BBQ promised land.

But visitors take note: this article (“A Day in the Life of a BBQ
Genius,” by food critic Andrew Knowlton) is from many years
ago, and its advice is dated. These days, queueing up at 10:30

would have you last in line!

R2: quantifying the information content in the model.

The idea behind the Flu Prediction Project, run jointly by IBM
Watson and the University of Osnabriick in Germany, is simple. +http:/ /www.flu-prediction.com
Researchers combine social-media and internet-search data, to-
gether with official data provided by government authorities, like
the Centers for Disease Control (CDC) in the United States, to
yield accurate real-time predictions about the spread of seasonal
influenza. This kind of forecasting model allows public-health
authorities to allocate resources (like antivirals and flu vaccines)
using the most up-to-date information possible. After all, the of-
ficial government data can usually tell you what flu activity was
like two weeks ago. Social-media and internet-search data, if used
correctly, have the potential to tell what you it’s like right now.

To give you a sense of how strong the predictive signal from
internet-search data can be, examine Figure 6.6, focusing first on
the scatter plot in the left panel. Here each dot corresponds to
a day. On the x-axis is a measure of Google search activity for
the term “how long does flu last,” where higher numbers mean

that more people are searching for that term on that day.> On 5 Specifically, it’s a z score: how many
standard deviations about the mean

. was the search frequency on that day
constructed from data provided by the CDC. for that particular term.

the y axis, we see a measure of actual flu activity on that day,

The search activity on a given day strongly predicts actual flu
transmission, which makes sense: one of the first things that many
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people do when they fall ill is to commiserate with a search engine
about the depth and duration of their suffering. But just how
much information about flu does the search activity for this single
term—"how long does flu last”—convey?

Our regression model provides a way of measuring the “amount
of this information, because it allows us to compare our predic-
tions of flu activity both with and without the x variable.

17

e Without knowing the predictor variable, our best guess for
the outcome is just the sample mean, 7, and the prediction er-
ror for each case is y; — . You can think of the sample mean
as our “baseline” or “straw man” prediction; it is obviously a
pretty simple baseline.

e With the predictor variable, our best guess is given by the
regression model, §; = Bo + B1x;, and the prediction error for
each case is the residual, y; — 7;.

In each case, we would expect these errors to be distributed
around zero. The question is: how much smaller do the errors
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Frequency
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Figure 6.6: A scatter plot of the CDC’s
measure of flu activity versus Google
search activity for the phrase “how
long does flu last” (z score of search
frequency). To the right of the scatter
plot, we see two dot plots, both on the
same scale: (1) the original deviations
from the sample mean, y; — 7; and

(2) the residuals from the regresson
equation, y; — 7;.
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of the regression model tend to be, compared with the errors we
make by predicting the outcome using the sample mean alone?

If our predictions errors get a lot smaller with the x variable than
without it, then we’ll know that this variable conveys a lot of infor-
mation about response.

To answer this question, return to Figure 6.6. To the right of
the scatter plot you see two histograms: (1) the original deviations
yi — ¥, and (2) the residuals from the regresson model. You'll
notice that some of the original variation has been absorbed by
the regression model: the residuals are less variable (standard
deviation 1.5) than the original y points (standard deviation 2.7).

This is how a regression model measures the information con-
tent of a predictor: information means reduction in prediction
error for the response. The bigger this reduction in prediction un-
certainty, the more informative the predictor. The typical way of
summarizing these numbers is via a statistic called R?:

sd(residuals) 2

RP=1-
sd(original y values)

R? is always between o and 1, with 1 meaning “perfectively
informative” and o meaning “not informative at all.” For our data
in Figure 6.6, R? is approximately 1 — (1.5/2.7)% a2 0.7. This means
that approximately 70% of the variation in the CDC flu activity
index can be predicted using this single search term, while the
remaining 30% cannot be predicted using this search term.



