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Bayes’ rule

Our conditional probabilities always depend on what we know.
When our knowledge changes, these probabilities must also
change. A 250-year-old mathematical principle called Bayes’ Rule
tells us how.

Bayesian search: finding the USS Scorpion

In February of 1968, the USS Scorpion set sail from the naval base
in Norfolk, Virginia, under the command of Francis Slattery. The
Scorpion was a Skipjack-class high-speed attack submarine, the
fastest in the American fleet. Like other subs of her class, she
played a major role in U.S. military strategy. Think The Hunt for
Red October here: throughout the Cold War, both the Americans
and the Soviets deployed large fleets of attack subs, whose mis-
sion was to locate, track, and—should the unthinkable happen—
destroy the other side’s ballistic-missile submarines.

On this deployment, the Scorpion sailed east, bound for the
Mediterranean Sea, where for three months she participated in
training exercises alongside the 6th Naval Fleet. Then in mid-May,
the Scorpion was sent back west, past Gibraltar and out into the
Atlantic. There she was ordered to observe Soviet naval vessels
operating near the Azores—a remote island chain in the middle of
the North Atlantic, about 850 miles off the coast of Portugal—and
then to continue west, bound for home. The sub was due back in
Norfolk at 1 PM on Monday, May 27th, 1968.

On the docks in Norfolk that day, the families of the Scorpion’s
99 crew members were gathered to welcome their loved ones back
home. But as 1 PM came and went, the sub had not yet surfaced.
Minutes stretched into hours; day gave way to night. Still the
families waited. But there was no sign of the Scorpion.

With growing alarm, the Navy ordered a search. By 10 PM, the
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operation involved 18 ships; by the next morning, 37 ships and 17
long-range patrol aircraft. But the odds of a good outcome were
slim. The Scorpion had last made contact off the Azores, 6 days
ago, and 2,670 miles away from Norfolk. She could have been
anywhere along that strip of ocean between the Azores and the
eastern seaboard. As the hours ticked by, the chances that the sub
could be located, and that rescue gear could be deployed in time,
were rapidly diminishing. At a tense news conference on May
28th, President Lyndon Johnson summarized the mood of a nation:
“Nothing encouraging to report. . . . We are all quite distressed.”

Day after day went by, but the search for the Scorpion turned
up no results. Finally, after eight days, the Navy was forced to
concede the obvious: the Scorpion’s crew of 99 men were declared
lost at sea, presumed dead.

The Navy now turned to the grim task of locating the Scorpion’s
final resting place—a tiny needle in a vast haystack stretching
three-fourths of the way across the North Atlantic. Although
hopes for saving the crew had been dashed, the stakes were still
high, and not only for the families of those lost: the Scorpion had
carried two nuclear-tipped torpedoes, each capable of sinking an
aircraft carrier with a single hit. These dangerous warheads were
now somewhere on the bottom of the sea.

John Craven, Bayesian search guru

To lead the search for the Scorpion, the Pentagon turned to Dr. John
Craven, chief scientist in the Navy’s Special Projects Office, and the
leading guru on finding lost objects in deep water.

Remarkably, Dr. Craven had done this kind of thing before. Two
years earlier, in 1966, an American B-52 bomber had collided in
mid-air with a refueling tanker over the Spanish coast, near the
seaside village of Palomares. Both planes crashed, and the B-52’s
four hydrogen bombs, each of them 50 times more powerful than
the Hiroshima explosion, were scattered for miles. Luckily none of
the warheads had detonated, and three of the bombs were found
more or less immediately.1 But the fourth bomb was missing, and 1 Albeit after one of them had contam-

inated a roughly one-square-mile area
of tomato farms and woodland with
radioactive plutonium. The clean-up
operation in the wake of this incident
continues 50 years later, with the latest
negotiations between Spain and the
U.S. taking place in 2015.

was presumed to have fallen into the sea. John Craven was called
upon to help find it.

Craven and his team had to ponder many unknown variables
about the crash. Had the bomb remained in the plane, or had it
fallen out? If the bomb had fallen out, had either or both of its
parachutes deployed? If the parachutes had deployed, had the
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winds taken the bomb far out to sea? If so, in what direction, and
exactly how far?

Bayesian search. To sort through this thicket of unknowns, Craven
turned to his preferred strategy: Bayesian search. This search
methodology had been pioneered during World War II, when
the Allies used it to help locate German U-boats. But its origins
stretched back much further, all the way to a mathematical prin-
ciple called Bayes’ rule, first worked out by an English reverend
named Thomas Bayes, in the 1750s.

Bayesian search has three essential principles. First, you should
combine the pre-search opinions of various experts about the
plausibility of each possible scenario. In the case of the missing
H-bomb, some of these experts would be familiar with mid-air
crashes, some of them familiar with nuclear bombs, some with
coastal winds and ocean currents, and so forth. These opinions
should be synthesized to form a prior probability for each crash
scenario—and, by extension, a prior probability that the bomb
might be found in each possible search location. These probabil-
ities are “prior,” in the sense that they represent the best guess
available, before anyone has any data.

Second, you must evaluate the capability of your search in-
struments to establish the likelihood that, if the object were in a
given sector, you’d actually be able to find it there. This likelihood
is combined with the prior probability to form a single search-
effectiveness probability for each location. For example, let’s say
that the most plausible scenario puts the lost bomb at the bottom
of a very deep ocean trench. Despite its high prior probability,
this trench might still be a poor candidate location to begin your
search, for the simple reason that the trench is so dark and remote
that, even if the bomb were there, you’d be very unlikely to find
it. To draw on a familiar metaphor, a Bayesian search has you start
looking for your lost keys using a precise mathematical combina-
tion of two factors: where you think you lost them, and where the
streetlight is shining brightest.

Third and finally, as new data comes in during the search pro-
cess, you should use that new data to update your prior probabil-
ity for each search location into a posterior probability. This Bayesian
updating process is iterative, in the sense that today’s posterior
becomes tomorrow’s prior. Suppose you search in today’s region
of high posterior probability, but find nothing. Then for tomorrow,
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you reduce the probability in the region you just searched, reassess
your beliefs about each scenario, and bump up the probability in
the other regions accordingly. You keep doing this day after day,
always concentrating on that day’s new region of highest probabil-
ity, until you find what you’re looking for.

Craven is stymied. Unfortunately, military politics, and a clash
of personalities, prevented Dr. Craven and his team from actu-
ally applying these Bayesian principles to the 1966 search for the
missing H-bomb off the coast of Palomares. In a classic military
move, the Pentagon had asked the right hand to do one thing, and
then asked the left hand to put some handcuffs on the right one, to
make its job more difficult. The commanding officer on the scene,
Rear Admiral William S. Guest—nickname: Bull Dog—had a no-
tably different view of the way the search should be conducted.
Bull Dog was a doer, not a thinker. He had little patience for prob-
abilities, and even less patience for the team of twentysomething-
year-old math Ph.D’s he now found himself commanding. His
initial orders to Craven’s team, perhaps only half sarcastic, were
for them to prove that the bomb had fallen on land rather than in
the sea, so that it would be someone else’s job to find it.2 2 Sharon Bertsch McGrayne, The Theory

That Would Not Die, Yale University
Press, 2011 (pg. 190).

As a result, the search for the Palomares H-bomb was really
two searches. There was Craven’s Bayesian search, with its slide
rules and probability maps, and with updated probabilities con-
stantly chattering over the teletype machine as the mathematicians
fed remote calculations to a mainframe computer back in Penn-
sylvania. But the insights arising from the Bayesian search were
largely ignored in favor of Admiral Guest’s “plan of squares,”
which guided the real search, and which was pretty much exactly
what it sounds like. The frustrated Craven was like a high-school
stock picker who records virtual trades in a ledger and watches his
paper fortune grow, but never gets to buy and sell any shares.

Eventually, the bomb was found. It turns out that a fisherman
named Francisco Orts had seen the bomb fall into the water under
parachute, and he was able to guide the Navy to its exact point of
entry. Thus while the search was a success, the Bayesian part of
it had been a failure, for the simple reason that it had never been
given a chance. Nonetheless, the Palomares incident taught John
Craven some valuable lessons—both about the practicalities of
conducting a Bayesian search, and about how to how to get the
necessary support for that search from the military brass.
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And two years later, when he was called upon to find the USS
Scorpion, Craven was ready.

The search for the Scorpion continues

When the Scorpion disappeared in May of 1968, Craven and his
Bayesian search team were quickly reconvened. At first, the task
seemed vastly more daunting than the search for the Palomares
H-bomb had been. Back then, they had known to confine the
search to a relatively small area off the coast of southern Spain.
But here, the team had to find a submarine under 2 miles of water,
somewhere between Virginia and the Azores, without so much as
a single clue.

Luckily, they caught a break. Starting in the early 1960s, the
U.S. military had spent $17 billion installing an enormous, highly
classified network of underwater microphones throughout the
North Atlantic. Essentially, they had wired the entire ocean for
sound, so that they could track the movements of the Soviet navy.
Highly trained technicians at secret listening posts were monitor-
ing these microphones around the clock. The technicians could
look at the output from these devices and immediately distinguish
the acoustic signature of a submarine from that of a whale, an oil
tanker, or hot magma under the seabed.

After sniffing around, Craven discovered that one of these secret
listening posts in the Canary Islands had, one day in late May,
recorded a very unusual series of 18 underwater sounds. Then he
learned that two other listening posts—both of them thousands of
miles away, off the coast of Newfoundland—had recorded those
very same sounds around the same time. Craven’s team compared
these three readings and, by triangulation, worked out that the
sounds must have emanated from a very deep part of the Atlantic
Ocean, about 400 miles southwest of the Azores.

This location fell along the Scorpion’s expected route home.
Moreover, the sounds themselves were highly suggestive: a muf-
fled underwater explosion; then 91 seconds of silence; and then 17
further sonic events in rapid succession that, to Craven, sounded
like the implosion of various compartments of a submarine as it
sank beneath its hull-crush depth.3 3 PBS Nova documentary, “Submarines,

Secrets, and Spies.” Originally broad-
cast January 19, 1999. https://www.
youtube.com/watch?v=NJWHiPSvzh8

This acoustic revelation dramatically narrowed the size of the
search area. Still, the team had about 140 square miles of ocean
floor to cover, all of it 10,000 feet below the surface, and therefore
inaccessible to all but the most advanced submersibles.

https://www.youtube.com/watch?v=NJWHiPSvzh8
https://www.youtube.com/watch?v=NJWHiPSvzh8
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The Bayesian search now kicked into high gear. Craven’s first
step was to take a map of the seabed and divide it up into a grid
of little rectangles, each one a possible search location. Each rect-
angle got an alphanumeric code: B6, H3, and so on, just like in
the board game Battleship. Craven and his team then interviewed
expert submariners, and came up with nine possible scenarios—a
fire on board, a torpedo exploding in its bay, a clandestine Rus-
sian attack, and so on—for how the submarine had sunk. They
weighed the prior probability of each scenario, and ran computer
simulations to understand how the Scorpion’s likely movements
might have unfolded under each one. They assessed the capabil-
ities of the search fleet: its cameras, its magnetic-sensing instru-
ments, its sonars, its submersible robots. They even blew up depth
charges at precise locations, in order to calibrate their original
acoustical data from the listening posts in the Canary Islands and
Newfoundland.

Finally, they put all this information together to form a single
search-effectiveness probability for each cell on the grid. This map
crystallized thousands upon thousands of hours of interviews,
calculations, experiments, and careful thinking. It would have
looked something like this:

Figure 5.1: An attempted reconstruction
of John Craven’s probability map
for the Scorpion search. Darker red
rectangles indicate regions of relatively
higher prior probability.

Mathematically speaking, this map represented the best chance for
finding the Scorpion.

Predictably, Craven encountered both logistical and bureacratic
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difficulties in getting the Pentagon to pay attention to his map of
probabilities. Summer came and went. By this point, the search for
the Scorpion had been going on since early June, to no avail.

But eventually his cajoling paid off, and the military brass or-
dered that Craven’s map be used to guide the now months-old
search. So starting in October, when commanders leading the
search aboard the USS Mizar finally got ahold the map, the op-
eration became truly Bayesian. Day by day, the team rigorously
searched the region of highest probability, and crunched the num-
bers to update the map for tomorrow. And day by day, those num-
bers were slowly homing in on rectangle F6.

Found

On October 28th, Bayes finally paid off.
The Mizar was in the midst of its 5th cruise, and its 74th indi-

vidual run over the ocean floor. All of a sudden the ship’s magne-
tometer spiked, suggesting an anomaly on the sea floor. Cameras
were hurriedly deployed to investigate—and sure enough, there
she was:

Figure 5.2: A photo of the bow section
of the USS Scorpion, taken in 1968 by
the crew of the bathyscape Trieste II.
USN photo #1136658.

Partially buried in the sand, 400 miles from the nearest landfall
and two miles below the surface of the sea, the USS Scorpion had
been found at last.
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To this day, nobody knows for sure what actually happened
to the Scorpion—or if they do, they’re not talking. The Navy’s
official version of events, though inconclusive, cites the accidental
explosion of a torpedo or the malfunctioning of a garbage-disposal
unit as two of the most likely possible causes of the tragedy. Many
other explanations have been proposed over the years. And as
with any famous mystery, conspiracy theories abound.

But there was at least one definitive conclusion to come out of
the Scorpion incident: Bayesian search was a truly winning idea.
As it turned out, the sub’s final resting place lay a mere 260 yards
away from rectangle E5, the initial region of highest promise on
Craven’s map of prior probabilities. The search team had actually
passed over that location on a previous cruise, but had missed the
telltale signs due to a broken sonar.4 4 McGrayne, ibid.

Ponder that for a moment more. A lone submarine had been
lost somewhere in a 2600-mile stretch of open ocean, and the
Bayesian search had pinpointed her location to within 260 yards—
only three lengths of the submarine itself. It was a remarkable
triumph for Craven’s team, and for Bayes’ rule, the 250-year-old
mathematical formula that had served as the search’s guiding
principle.

Today, Bayesian search is a small industry, with at least one
college textbook5 explaining the details, and with entire companies 5 The Theory of Optimal Search (Op-

erations Research Society of America,
1975), by Lawrence D. Stone.

whose mission is to apply Bayesian principles to find what has
been lost. To cite a recent example, many readers will remember
the tragedy of Air France Flight 447, which crashed in the Atlantic
Ocean on its way from Rio de Janeiro to Paris, in June of 2009.
The search for the wreckage had been going on for two fruitless
years; then in 2011, a Bayesian search firm was hired, a map of
probabilities was drawn up—and the plane was found within one
week of undersea search.6 6 Stone et. al. “Search for the wreckage

of Air France Flight AF 447.” Statistical
Science 2014, Vol. 29(1), pp. 69-80.

Moreover, the broader principle behind Bayesian search, Bayes’
rule, is used almost everywhere: from courtrooms to doctor’s
offices, and from spam filters to self-driving cars. So if you want to
learn more about the key equation that found the Scorpion and that
helps power the modern world, then this chapter is for you.

Updating conditional probabilities

When our knowledge changes, our probabilities must change, too.
Bayes’ rule tells us how to change them.
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Imagine the person in charge of a Toyota factory who starts
with a subjective probability assessment for some proposition A,
like “our engine assembly robots are functioning properly.” Just to
put a number on it, let’s say P(A) = 0.95; we might have arrived at
this judgment, for example, based on the fact that the robots have
been down for 5% of the time over the previous month. In the
absence of any other information, this is as good a guess as any.

Now we learn something new, like information B: the last 5 en-
gines off the assembly line all failed inspection. Before we believed
there was a 95% chance that the assembly line was working fine.
What about now?

Figure 5.3: Bayes’ rule is named after
Thomas Bayes (above), an English
reverend of the 18th century who first
derived the result. It was published
posthumously in 1763 in “An Essay
towards solving a Problem in the
Doctrine of Chances.”

Bayes’s rule is an explicit equation that tells us how to incorpo-
rate this new information, turning our initial probability P(A) into
a new, updated probability:

P(A | B) =
P(A) · P(B | A)

P(B)
. (5.1)

Each piece of this equation has a name:

• P(A) is the prior probability: how probable is A, before ever
having seen data B?

• P(A | B) is the posterior probability: how probable is A, now
that we’ve seen data B?

• P(B | A) is the likelihood: if A were true, how likely is it that
we’d see data B?

• P(B) is the total (or marginal) probability of B: how likely
is it that we’d see data B anyway, regardless of whether A
is true or not? This calculation is usually the tedious part of
applying Bayes’ rule. Usually, as we’ll see in the examples,
we use the rule of total probability, which we learned in a
previous chapter.

Have you found the two-headed coin?

To get a feel for what’s going on here, let’s see an example of
Bayes’ rule in action.

Imagine a jar with 1024 normal quarters. Into this jar, a friend
places a single two-headed quarter (i.e. with heads on both sides).
Your friend then gives the jar a good shake to mix up the coins.
You draw a single coin at random from the jar, and without exam-
ining it closely, flip the coin ten times. The coin comes up heads all
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ten times. Are you holding the two-headed quarter, or an ordinary
quarter?

Now, you might be thinking that this example sounds pretty
artificial. But it’s not at all. In fact, in the real world, an awful lot
of time and energy is spent looking for metaphorical two-headed
coins—specifically, in any industry where companies compete
strenuously for talented employees. To see why, let’s change the
story just a little bit.

Suppose you’re in charge of a large trading desk at a major Wall
Street bank. You have 1025 employees under you, and each one is
responsible for managing a portfolio of stocks to make money for
your firm and its clients.

One day, a young trader knocks on your door and confidently
asks for a big raise. You ask her to make a case for why she de-
serves one. She replies:

Look at my trading record. I’ve been with the company for
ten months, and in each of those ten months, my portfolio
returns have been in the top half of all the portfolios managed
by my peers on the trading floor. If I were just an average
trader, this would be very unlikely. In fact, the probability
that an average trader would see above-average results for
ten months in a row is only (1/2)10, which is less than one
chance in a thousand. Since it’s unlikely I would be that lucky,
the implication is that I am a talented trader, and I should
therefore get a raise.

The math of this scenario is exactly the same as the one involv-
ing the big jar of quarters. Metaphorically, the trader is claiming
to be a two-headed coin (T), on the basis of some data D: that she
performs above average, every single month without fail.

But from your perspective, things are not so clear. Is the trader
lucky, or good? There are 1025 people in your office (i.e. 1025
coins). Now you’re confronted with the data that one of them
has had an above-average monthly return for ten months in a
row (i.e. D = “flipped heads ten times in a row”). This is admit-
tedly unlikely, and this person might therefore be an excellent
performer, worth paying a great deal to retain. But excellent per-
formers are probably also rare, so that the prior probability P(T)
is pretty small to begin with. To make an informed decision, you
need to know P(T | D): the posterior probability that the trader is
an above-average performer, given the data.
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Applying Bayes’ rule. So our two-headed coin example definitely
has real-world applications. Let’s use it to see how a posterior
probability is calculated using Bayes’ rule:

P(T | D) =
P(T) · P(D | T)

P(D)
.

We’ll take this equation one piece at a time. First, what is P(T),
the prior probability that you are holding the two-headed quarter?
Well, there are 1025 quarters in the jar: 1024 ordinary ones, and
one two-headed quarter. Assuming that your friend mixed the
coins in the jar well enough, then you are just as likely to draw one
coin as another, and so P(T) must be 1/1025.

Next, what about P(D | T), the likelihood of flipping ten heads
in a row, given that you chose the two-headed quarter? Clearly
this is 1—if the quarter has two heads, there is no possibility of
seeing anything else.

Finally, what about P(D), the marginal probability of flipping
ten heads in a row? As is almost always the case when using
Bayes’ rule, P(D) is the hard part to calculate. We will use the
law of total probability to do so:

P(D) = P(T) · P(D | T) + P(not T) · P(D | not T) .

Taking the pieces on the right-hand one by one:

• As we saw above, the prior probability of the two-headed
coin, P(T), is 1/1025.

• This means that the prior probability of an ordinary coin,
P(not T), must be 1024/1025.

• Also from above, we know that P(D | T) = 1.

• Finally, we can calculate P(D | not T) quite easily. If the
coin is an ordinary quarter, then there is a 50% chance of
getting heads on any one coin flip. Each flip is independent.
Therefore, the probability of a 10-head winning streak is

P(D | not T) =
1
2
⇥ 1

2
⇥ · · ·⇥ 1

2
(10 times)

=

✓
1
2

◆10
=

1
1024

.
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We can now put all these pieces together:

P(T | D) =
P(T) · P(D | T)

P(T) · P(D | T) + P(not T) · P(D | not T)

=
1

1025 · 1
1

1025 · 1 + 1024
1025 · 1

1024
=

1/1025
2/1025

=
1
2

.

Perhaps surprisingly, there is only a 50% chance that you are hold-
ing the two-headed coin. Yes, flipping ten heads in a row with
a normal coin is very unlikely. But so is drawing the one two-
headed coin from a jar of 1024 normal coins! In fact, as the math
shows, both explanations for the data are equally unlikely, which
is why we’re left with a posterior probability of 0.5.

Two-headed coins in the wild. Let’s return to the scenario of the
trader knocking at your door, asking for a rise on the basis of a
10-month winning streak. In light of what you know about Bayes’
rule, which of the following replies is the most sensible?

(A) “You’re right. Here’s a giant raise.”

(B) “Thank you for letting me know. While I need more data to
give you a raise, you’ve had a good ten months. I’ll review
your case again in 6 months and will look closely at the facts
you’ve showed me.”

The best answer depends very strongly on your beliefs about
whether excellent stock traders are common or rare. For example,
suppose you believe that 10% of all stock traders are truly excel-
lent, in the sense that they can reliably finish with above-average
returns, month after month; and that the other 90% just muddle
through and collect their thoroughly average bonus checks. Then
P(T) = 0.1, and

P(T | D) =
0.1 · 1

0.1 · 1 + 0.9 · 1
1024

⇡ 0.991 ,

so that there is better than a 99% chance that your employee is
among those 10% of excellent performers. You should give her a
raise, or risk letting some other bank save you the trouble.

What if, however, you believed that excellence were much rarer,
say P(T) = 1/10000? In that case,

P(T | D) =
0.0001 · 1

0.0001 · 1 + 0.9999 · 1
1024

⇡ 0.093 .
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In this case, even though the ten-month hot streak was unusual—
P(D | not T) is small, at 1/1024—there is still more than a 90%
chance that your employee got lucky.

The moral of the story is that the prior probability in Bayes’
rule—in this case, the baseline rate of excellent stock traders, or
two-headed coins—plays a very important role in correctly esti-
mating conditional probabilities. Ignoring this prior probability is
a big mistake, and such a common one that it gets its own name:
the base-rate fallacy.7 7 en.wikipedia.org/wiki/Base_rate_

fallacySo just how rare are two-headed coins? While it’s very diffi-
cult to know the answer to this question in something like stock-
trading, it is worth pointing out one fact: in the above example, a
prior probability of 10% is almost surely too large. Remember the
NP rule: if this prior probability were right, then out of your office
of 1025 traders, you would expect there to be 0.1 ⇥ 1025 ⇡ 100
of them with 10-month winning streaks, all at your door at once
clamoring for a raise. (Traders are not known for being shy about
their winning streaks, asking for raises, or anything else.) Since
this hasn’t happened, the prior probability P(T) = 0.1 is too high
to be consistent with all the data available, and should be revised
downward.

On the flip side, we also know that two-headed coins in stock-
picking do exist, or else there would be no explanation for Warren
Buffett, known as the “Oracle of Omaha.” Over the last 50 years,
Warren Buffett has beaten the market so consistently that it almost
defies belief: between 1964 and 2013, the share price of his holding
company, Berkshire Hathaway, rose by about 1 million percent,
versus only 2300% for the S&P 500 stock index.

This line of reasoning demonstrates that, while the prior prob-
ability often reflects your own knowledge about the world, it can
also be informed by data. Either way, the prior is very influential
in real-word probability calculations, and should not be ignored.

Understanding Bayes’ rule using trees

Let’s try a second example of Bayes’ rule in action.

You are driving through unfamiliar territory in East Texas
in your burnt-orange car sporting a bumper sticker from
the University of Texas. You reach a fork in the road. In one
direction lies College Station; in another direction, Austin. The
road sign pointing to Austin has been stolen, but you see a
man by the side of the road. You pull over and ask him for

en.wikipedia.org/wiki/Base_rate_fallacy
en.wikipedia.org/wiki/Base_rate_fallacy
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directions.
You know that there are two kinds of people in this part

of Texas: Longhorns and Aggies, with Aggies outnumbering
Longhorns by a 60/40 margin. But you don’t know which
one this man is. If he’s a Longhorn, he is sure to help you
out to the best of his ability, and you judge that there is only
a 5% chance that he will get confused and point you in the
wrong direction. But you believe that, if he is an Aggie and
you ask him for directions to some specific place, there is a
70% chance that he will see the bumper sticker on your car
and send you the opposite way to wherever you ask.

You’re clever, though, and so you decide to ask him
“Which way is your university?” (Think for a minute about
why that’s the smart question to ask, rather than “Which way
is UT?”) He stares for a moment at your bumper sticker, then
smiles and points to the left. You go in the direction indicated,
and two hours later you arrive in Austin.

Given that the man has pointed you to Austin, what is the poste-
rior probability that he was a Longhorn: P(Longhorn | pointed to Austin)?

One way of solving this is to use Bayes’ rule directly:

P(Longhorn | pointed to Austin) =
P(Longhorn) · P(pointed to Austin | Longhorn)

P(pointed to Austin)

=
0.4 · 0.95

0.6 · 0.7 + 0.4 · 0.95

= 0.475 .

We used three facts here in the calculation. First, the prior probal-
ities are P(Longhorn) = 0.4), and therefore P(Aggie) = 0.6.
Second, we know that P(pointed to Austin | Longhorn) = 0.95: he
saw your bumper sticker, knew you were a Longhorn, and there-
fore had a 95% chance of pointing you towards his university (that
is, UT). Finally, we know that P(pointed to Austin | Aggie) = 0.7:
he saw your bumper sticker, knew you were a Longhorn, and
therefore had a 70% chance of pointing you towards away from his
university (that is, away from A&M and towards UT). Then we use
the rule of total probability to calculate P(pointed to Austin).

So overall, there is slightly better than an even chance that you
were talking to an Aggie. Bayes’ rule gets us the answer with
little fuss, by simplying plugging in the appropriate terms to the
formula. But an alternative, very intuitive way of solving this
problem—and of understanding Bayes’ theorem more generally—
is to use a tree.
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Let’s see how this works. First, start by listing the possible
states of the world, along with their probabilities. I like to put
these in boxes:

Aggie
0.6

Longhorn
0.4

Next, draw arrows from each state of the world to the possible
observational consequences. Along the arrows, put the conditional
probabilities that you will observe each data point, given the corre-
sponding state of the world:

Aggie
0.6

Longhorn & 

Austin

0.4 x 0.95 = 0.38

Longhorn & 

College Station

0.4 x 0.05 = 0.02

Aggie &

Austin

0.6 x 0.7 = 0.42

Aggie &

College Station

0.6 x 0.3 = 0.18

Longhorn
0.4

0.95 0.05 0.7 0.3

At the terminal leaves of the tree, multiply out the probabilities
according to the multiplication rule: P(A, B) = P(A) · P(B | A).
So, for example, the probability that the man is an Aggie and that
he points you to Austin is 0.7 ⇥ 0.6 = 0.42. The sum of all the
probabilities in the leaves of the tree must be 1, since they exhaust
all possibilities.

But now that you’ve arrived back home, you know that the man
was pointing to Austin. To use the tree to compute the probability
that he was a Longhorn, simply cut off all the branches corre-
sponding to data that wasn’t actually observed, leaving only the
actual data:
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Aggie
0.6

Longhorn & 

Austin

0.4 x 0.95 = 0.38

Aggie &

Austin

0.6 x 0.7 = 0.42

Longhorn
0.4

0.95 0.7

The remaining leaf probabilities are proportional to the posterior
probabilities of the corresponding states of the world. These prob-
abilities, of course, do not sum to 1 anymore. But this is easily
fixed: simply divide each probability by the sum of all remaining
probabilities (in this case, 0.38 + 0.42 = 0.8):

Aggie
0.6

Longhorn & 

Austin

0.4 x 0.95 = 0.38

0.38/0.8 = 0.475

Aggie &

Austin

0.6 x 0.7 = 0.42

0.42/0.8 = 0.525

Longhorn
0.4

0.95 0.7

As before, we find that there is a probability of 0.475 that the
man at the watermelon stand was a Longhorn. Just so you can
keep things straight, the sum of 0.8, by which you divided the
terminal-leaf probabilities in the final step to ensure that they
summed to 1, corresponds exactly to the denominator, P(points to
Austin), in Bayes’ rule.
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Bayes’ rule and the law

Suppose you’re serving on a jury in the city of New York, with
a population of roughly 10 million people. A man stands before
you accused of murder, and you are asked to judge whether he
is guilty (G) or not guilty (⇠ G). In his opening remarks, the
prosecutor tells you that the defendant has been arrested on
the strength of a single, overwhelming piece of evidence: that
his DNA matched a sample of DNA taken from the scene of the
crime. Let’s call denote this evidence by the letter D. To convince
you of the strength of this evidence, the prosecutor calls a forensic
scientist to the stand, who testifies that the probability that an in-
nocent person’s DNA would match the sample found at the crime
scene is only one in a million. The prosecution then rests its case.

Would you vote to convict this man?
If you answered “yes,” you might want to reconsider! You are

charged with assessing P(G | D)—that is, the probability that the
defendant is guilty, given the information that his DNA matched
the sample taken from the scene. Bayes’ rule tells us that

P(G | D) =
P(G) · P(D | G)

P(D)
=

P(G) · P(D | G)
P(D | G) · P(G) + P(D |⇠ G)P(⇠ G)

.

We know the following quantities:

• The prior probability of guilt, P(G), is about one in 10 mil-
lion. New York City has 10 million people, and one of them
committed the crime.

• The probability of a false match, P(D |⇠ G), is one in a
million, because the forensic scientist testied to this fact.

To use Bayes’ rule, let’s make one additional assumption: that the
likelihood, P(D | G), is equal to 1. This means we’re assuming
that, if the accused were guilty, there is a 100% chance of seeing a
positive result from the DNA test.

Let’s plug these numbers into Bayes’ rule and see what we get:

P(G | D) =
1

10,000,000 · 1

1 · 1
10,000,000 + 1

1,000,000 · 9,999,999
10,000,000

⇡ 0.09 .

The probability of guilt looks to be only 9%! This result seems
shocking in light of the scientist’s claim that P(D |⇠ G) is so small:
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a “one in a million chance” of a positive match for an innocent
person. Yet the prior probability of guilt is very low—P(G) is a
mere one in 10 million—and so even very strong evidence still
only gets us up to P(G | D) = 0.09.

Conflating P(⇠ G | D) with P(D |⇠ G) is a serious error
in probabilistic reasoning. These two numbers are typically very
different from one another, because conditional probabilities aren’t
symmetric, as we’ve said more than once. Getting this wrong in
the context of a courtroom—that is, conflating P(A | B) with
P(B | A)—is so common that it has its own name: the prosecutor’s
fallacy.8 8 en.wikipedia.org/wiki/Prosecutor’

s_fallacyAn alternate way of thinking about this result is the following.
Of the 10 million innocent people in New York, ten would have
DNA matches merely by chance. The one guilty person would
also have a DNA match. Hence there are 11 people with a DNA
match, only one of whom is guilty, and so P(G | D) ⇡ 1/11. Your
intuition may mislead, but Bayes’ rule never does!

en.wikipedia.org/wiki/Prosecutor's_fallacy
en.wikipedia.org/wiki/Prosecutor's_fallacy

