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Simpson’s paradox and the rule of total probability

Simpson’s paradox

Consider the following data on obstetricians delivering babies
at a hospital in England. The table below shows the complication
rates for both junior and senior doctors on the delivery ward,
grouped by delivery type:

Easier deliveries Harder deliveries Overall

Senior doctors 0.052 (213) 0.127 (102) 0.076 (315)
Junior doctors 0.067 (3169) 0.155 (206) 0.072 (3375)

The numbers in parentheses are the total deliveries of each type.
This table exhibits an aggregation paradox, also called Simp-

son’s paradox. No matter what kind of delivery you have, whether
easy or hard, you’d prefer to have a senior doctor. They have lower
complication rates than junior doctors in both cases. Yet counter-
intuitively, the senior doctors have a higher overall complication
rate: 7.6% versus 7.2%. Why? Because of a lurking variable: most
of the deliveries performed by junior doctors are easier cases,
where complication rates are lower overall. The senior doctors,
meanwhile, work a much higher fraction of the harder cases. Their
overall complication rate reflects this burden.

Here’s another example. Jacoby Ellsbury and Mike Lowell were
two baseball players for the Boston Red Sox during the 2007 and
2008 seasons. The table below shows their batting averages for
those two seasons, with their number of at-bats in parentheses.
We see that Ellsbury had a higher batting average when he was a
rookie, in 2007; a higher batting average a year later, in 2008; but a
lower batting average overal!

Again we have an aggregation paradox, and again it is resolved
by pointing to a lurking variable: in 2007, when both players had
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2007 2008 Overall

Lowell .324 (589) .274 (419) .304 (1008)
Ellsbury .353 (116) .280 (554) .293 (670)

higher averages, Ellsbury had many fewer at-bats than Lowell.
It turns out the math of these aggregation paradoxes can be

understood a lot more deeply in terms of something called the
rule of total probability, or the mixture rule. This rule sounds im-
pressive, and we’ve written out the full math version below (see
Equation 4.2 on page 37). But the intuition of this rule is actually
quite simple. It says: the probability of any event is the sum of
the probabilities for all the different ways in which the event can
happen. In that sense, the law of total probability is really just Kol-
mogorov’s third rule in disguise. The distinct ways in which some
event A can happen are mutually exclusive. Therefore we just sum
all their probabilities together to get P(A).

Let’s return to the example on obstetric complication rates on
junior doctors at a hospital in England. In the table, there are
two ways of having a complication: with an easy case, or with a
hard case. Therefore, the total probability is the sum of two joint
probabilities:

P(complication) = P(easy and complication)+ P(hard and complication) .

If we now apply the rule for conditional probabilities (Equation
2.1) to each of the two joint probabilities on the right-hand side of
this equation, we have this:

P(complication) = P(easy) · P(complication | easy)+ P(hard) · P(complication | hard)

Thus the rule of total probability says that overall probability is a
weighted average—a mixture—of the two conditional probabilities.
For senior doctors we get

P(complication) =
213
315

· 0.052 +
102
315

· 0.127 = 0.076 .

And for junior doctors, we get

P(complication) =
3169
3375

· 0.067 +
206
3375

· 0.155 = 0.072 .

This is a lower overall probabiity of a complication, despite the
fact the junior doctors have higher conditional probabilities of a
complication in all scenarios.
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So which probabilities should we report: the conditional prob-
abilities, or the overall (total) probabilities? There’s no one right
answer; it depends on your conditioning variable, and your goals.
In the obstetric data, the overall complication rates are clearly mis-
leading. The distinction between easier and harder cases matters
a lot. Senior doctors work harder cases, on average, and therefore
have higher overall complication rates. But what matters to the
patient, and to anyone who assesses the doctors’ performance, are
the conditional rates. You have to account for the lurking variable.

The baseball data is different. Here the conditional probabili-
ties for 2007 and 2008 are probably misleading. The distinction
between 2007 and 2008 is nothing more than an arbitrary cutoff
on the calendar. It’s barely relevant from the standpoint of assess-
ing baseball skill, and it needlessly splits one big sample of each
player’s history into two smaller, more variable samples. So in this
case we’d probably go with the overall averages if we wanted to
say which player was performing better.

A formal statement of the rule of total probability

Suppose that events B1, B2, . . . , BN constitute an exhaustive parti-
tion of all possibilities in some situation. That is, the events them-
selves are mutually exclusive, but one of them must happen. This
can be expressed mathematically as

P(Bi, Bj) = 0 for any i 6= j, and
N

Â
i=1

P(Bi) = 1 . (4.1)

Now consider any event A. If Equation 4.1 holds, then

P(A) =
N

Â
i=1

P(A, Bi) =
N

Â
i=1

P(Bi) · P(A | Bi) . (4.2)

Equation 4.2 is what is usually called the rule of total probability.

Surveys and the rule of total probability

One of the least surprising headlines of 2010 must surely have
been the following, from the ABC News website:

Teens not always honest about drug use.1 1 Kim Carollo, ABC News, Oct. 25, 2010.
Link here.

http://abcnews.go.com/Health/MindMoodNews/teens-truthful-drug-study/story?id=11947228
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In other news, dog bites man.
To be fair, the story itself was a bit more surprising than the

headline. Yes, it’s hardly news that teenagers would lie to their
parents, teachers, coaches, and priests about drug use. But the
ABC News story was actually reporting on a study showing that
teenagers also lie to researchers who conduct anonymous sur-
veys about drug use—even when those teenagers know that their
answers will be verified using a drug test.

Here’s the gist of the study. Virginia Delaney-Black and her col-
leagues at Wayne State University, in Detroit, gave an anonymous
survey to 432 teenagers, asking whether they had used various
illegal drugs.2 Of these 432 teens, 211 of them also agreed to give a 2 V. Delaney–Black et. al. “Just Say ‘I

Don’t’: Lack of Concordance Between
Teen Report and Biological Measures of
Drug Use.” Pediatrics 165:5, pp. 887-93
(2010).

hair sample. Therefore, for these 211 respondents, the researchers
could compare people’s answers with an actual drug test.

The two sets of results were strikingly different. For example,
of the 211 teens who provided a hair sample, only a tiny fraction
of them (0.7%) admitted to having used cocaine. However, when
the hair samples were analyzed in the lab, 69 of them (33.7%) came
back positive for cocaine use.

And it wasn’t just the teens who lied. The survey researchers
also asked the parents of the teens whether they themselves had
used cocaine. Only 6.1% said yes, but 28.3% of the hair samples
came back positive.

Let’s emphasize again that we’re talking about a group of peo-
ple who were guaranteed anonymity, who wouldn’t be arrested
or fired for saying yes, and who willingly agreed to provide a
hair sample that they knew could be used to verify their survey
answers. Yet a big fraction lied about their drug use anyway.

Surveys and lies

Drug abuse—whether it’s crack cocaine in Detroit, or bathtub
speed in rural Nebraska—is a huge social problem. It fills our
jails, drains public finances, and perpetuates a trans-generational
cycle of poverty. Getting good data on this problem is important.
As it stands, pediatricians, schools, and governments all rely on
self-reported measures of drug use to guide their thinking on this
issue. Yet distressingly, the proportion of self-reported cocaine use
in the Detroit study, 0.7%, was broadly similar to the findings
in large, highly regarded surveys—for example, the federally
funded National Survey on Drug Use and Health. The work of
Dr. Delaney-Black and her colleagues would seem to imply that all

https://www.icpsr.umich.edu/icpsrweb/ICPSR/series/64
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of these self-reported figures might be way off the mark.
Moreover, theirs hasn’t been the only study to uncover evidence

that surveys cannot necessarily be taken at face value. Here are
some other things that, according to research on surveys, people lie
about in surveys.

• Churchgoers overstate the amount of money they give when
the hat gets passed around during the service.

• Gang members embellish the number of violent encounters
they have been in.

• Men exaggerate their salary, among other things.

• Ravers will “confess” to having gotten high on drugs that do
not actually exist.

How to ask an embarrassing question: probability as an invisibility cloak

But there’s actually some good news to be found here. It’s this:
when people lie in surveys, they tend to do so for predictable
reasons (to impress someone or avoid embarrassment), and in pre-
dictable ways (higher salary, fewer warts). This opens the door for
survey designers to use a bit of probability, and a bit of psychol-
ogy, to get at the truth—even in a world of liars.

Let’s go back to the example of drug-use surveys so that we
can see this idea play out. Suppose that you want to learn about
the prevalence of drug use among college students. You decide to
conduct a survey at a large state university to find out how many
of the students there have smoked marijuana in the last year. But
as you now appreciate, if you ask people direct questions about
drugs, you can’t always trust their answers.

Here’s a cute trick for alleviating this problem, in a way that
uses probability theory to mitigate someone’s psychological in-
centive to lie. Suppose that, instead of asking people point-blank
about marijuana, you give them these instructions.

1. Flip a coin. Look at the result, but keep it private.

2. If the coin comes up heads, please use the space provided
to write an answer to question Q1: “Is the last digit of your
Social Security number odd?”

3. If the coin comes up tails, please use the space provided to
write an answer to question Q2: “Have you smoked mari-
juana in the last year?”
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The key fact here is that only the respondent knows which ques-
tion he or she is answering. This gives people plausible deniability.
Someone answering “yes” might have easily flipped heads and
answered the first, innocuous question rather than the second, em-
barrassing one, and the designer of the survey would never know
the difference. This reduces the incentive to lie.

Moreover, despite the partial invisibility cloak we’ve provided
to the marijuana users in our sample, we can still use the results
of the survey to answer the question we care about: what fraction
of students have used marijuana in the past year? We’ll use the
following notation:

• Let Y be the event “a randomly chosen student answers yes.”

• Let Q1 be the event “the student provided an answer to ques-
tion 1, about their Social Security number.”

• Let Q2 be the event “the student provided an answer to ques-
tion 2, about their marijuana use.”

From the survey, we have an estimate of P(Y), which is the overall
fraction of survey respondents providing a “yes” answer. We really
want to know P(Y | Q2), the probability that a randomly chosen
student will answer “yes”, given that he or she was answering the
marijuana question. The problem is that we don’t know which
students were answering the marijuana question.

To understand the rule of total probability, let’s return to our
hypothetical survey in which we want to know the answer to the
question: what fraction of students have used marijuana in the
past year? Then we have each survey respondent privately flip a
coin to determine whether they answer an innocurous question
(Q1) or the question about marijuana use (Q2). We used the fol-
lowing notation:

• Let Y be the event “a randomly chosen student answers yes.”

• Let Q1 be the event “the student provided an answer to ques-
tion 1, about their Social Security number.”

• Let Q2 be the event “the student provided an answer to ques-
tion 2, about their marijuana use.”

To solve this problem, we’ll use rule of total probability. In the
case of our drug-use survey, this means that

P(Y) = P(Y, Q1) + P(Y, Q2) . (4.3)
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In words, this equation says that there are two ways to get a yes
answer: from someone answering the social-security-number ques-
tion, and from someone answering the drugs question. The total
number of yes answers will be the sum of the yes answers from
both types in this mixture.

Now let’s re-write Equation 4.3 slightly, by applying the rule for
conditional probabilities to each of the two joint probabilities on
the right-hand side of this equation:

P(Y) = P(Q1) · P(Y | Q1) + P(Q2) · P(Y | Q2) . (4.4)

This equation now says that the overall probability P(Y) is a
weighted average of two conditional probabilities:

• P(Y | Q1), the probability that a randomly chosen student
will answer “yes”, given that he or she was answering the
social-security-number question.

• P(Y | Q2), the probability that a randomly chosen student
will answer “yes”, given that he or she was answering the
marijuana question.

The weights in this average are the probabilities for each question:
P(Q1) and P(Q2), respectively.

Now we’re ready to use Equation 4.4 to calculate the probability
that we care about: P(Y | Q2). We know that P(Q1) = P(Q2) =

0.5, since a coin flip was used to determine whether Q1 or Q2 was
answered. Moreover, we also know that P(Y | Q1) = 0.5, since it
is equally likely that someone’s Social Security number will end in
an even or odd digit.3 3 This survey design relies upon the fact

that the survey designer doesn’t know
anyone’s Social Security number. If
you were running this survey in a large
company, where people’s SSNs were
actually on file, you’d need to come up
with some other innocuous question
whose answer was unknown to the
employer, but for which P(Y | Q1) was
known.

We can use this information to simplify the equation above:

P(Y) = 0.5 · 0.5 + 0.5 · P(Y | Q2) ,

or equivalently,

P(Y | Q2) = 2 · {P(Y)� 0.25} .

Suppose, for example, that 35% of survey respondents answer yes,
so that P(Y) = 0.35. This implies that

P(Y | Q2) = 2 · (0.35 � 0.25) = 0.2 .

We would therefore estimate that about 20% of students have
smoked marijuana in the last year.


