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Probability and conditional probability

Probability is a rich language for communicating about uncer-
tainty. And while most of us have an intuitive notion of what it
means, it pays to be a bit more specific.

A probability is just a number that measures how likely it is
that some event, like rain, will occur. If A is an event, P(A) is its
probability: P(coin lands heads) = 0.5, P(rainy day in Ireland) =
0.85, P(cold day in Hell) = 0.0000001, and so forth.

Probability from frequencies. Some probabilities are derived from
data, like the knowledge that a coin comes up heads about 50%
of the time in the long run, or that 11 people out of 100,000 die
in a car accident. But it’s also perfectly normal for a probability
to reflect your subjective assessment or belief about something.
Here, you should imagine a stock-market investor who has to
decide whether to buy a stock or sell it. The performance of a
stock over the coming months and years involves a bunch of one-
off events that have never happened before, and will never be
repeated. But that’s OK. We can still talk about a probability like
P(Apple stock goes up next month). We just have to recognize
that this probability reflects someone’s subjective judgment, rather
than a long-run frequency from some hypothetical coin-flipping
experiment.

Probability from judgment and/or betting markets. If you don’t have
any data, a great way to estimate the probability of some event is
to get people to make bets on it. Let’s take the example of the 2014
mens’ final at Wimbledon, between Novak Djokovic and Roger
Federer. This was one of the most anticipated tennis matches in
years. Djokovic, at 27 years old, was the top-ranked player in the
world and at the pinnacle of the sport. And Federer was—well,
Federer! Even at 32 years old and a bit past his prime, he was
ranked #3 in the world, and had been in vintage form leading up
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to the final.
How could you synthesize all this information to estimate a

probability like P(Federer wins)? Well, if you walked into any
betting shop in Britain just before the match started, you would
been quoted odds of 20/13 on a Federer victory.1 To interpret 1 There are approximately 9,000 betting

shops in the United Kingdom. In fact,
it is estimated that approximately 4%
of all retail storefronts in England are
betting shops.

odds in sports betting, think “losses over wins.” That is, if Federer
and Djokovic played 33 matches, Federer would be expected to
win 13 of them and lose 20, meaning that

P(Federer wins match) =
13

13 + 20
⇡ 0.4 .

The markets had synthesized all the available information for you,
and concluded that the pre-match probability of a Federer victory
was just shy of 40%. (Djokovic ended up winning in five sets.)

Conditional probability

Another very important concept is that of a conditional probability.

A conditional probability is the chance that some event A happens,
given that another event B happens. We write this as P(A | B) for
short, where the bar ( | ) means “given” or “conditional upon.”

We’re all accustomed to thinking about conditional probabilities
in our everyday lives, even if we don’t do so quantitatively. For
example:

• P(rainy afternoon | cloudy morning),

• P(rough morning | out late last night),

• P(rough morning | out late last night, drank extra water),

and so forth. As the last example illustrates, it’s perfectly valid to
condition on more than one event.

A key fact about conditional probabilities is that they are not
symmetric: P(A | B) 6= P(B | A). In fact, these two numbers are
sometimes very different. For example, just about everybody who
plays professional basketball in the NBA practices very hard:

P(practices hard | plays in NBA) ⇡ 1 .

But sadly, most people who practice hard with a dream of playing
in the NBA will fall short:

P(plays in NBA | practices hard) ⇡ 0 .

https://en.wikipedia.org/wiki/Betting_shop
https://en.wikipedia.org/wiki/Betting_shop
http://abb.uk.com/how-many-betting-shops-are-there-are-their-numbers-growing/
http://abb.uk.com/how-many-betting-shops-are-there-are-their-numbers-growing/
http://abb.uk.com/how-many-betting-shops-are-there-are-their-numbers-growing/
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We’ll see a few examples later where people get this wrong, and
act as if P(A | B) and P(B | A) are the same. Don’t do this.

Conditional probabilities are used to make statements about
uncertain events in a way that reflects our assumptions and our
partial knowledge of a situation. They satisfy all the same rules
as ordinary probabilities, and we can compare them as such. For
example, we all know that

P(rainy afternoon | clouds) > P(rainy afternoon | sun) ,

P(shark attack | swimming in ocean) > P(shark attack | watching TV) ,

P(heart disease | swimmer) < P(heart disease | couch potato) ,

and so forth, even if we don’t know the exact numbers.

The rules of probability

Probability is an immensely useful language, and there are only a
few basic rules (called “axioms” in mathematical language):

(1) All probabilities are numbers between 0 and 1, with 0 meaning
impossible and 1 meaning certain.

(2) Either an event occurs (A), or it doesn’t (not A):

P(not A) = 1 � P(A) .

(3) If two events are mutually exclusive (i.e. they cannot both
occur), then

P(A or B) = P(A) + P(B) .

There’s also a fourth, slightly more advanced rule for condi-
tional probabilities:

(4) Let P(A, B) be the joint probability that both A and B happen.
Then the conditional probability P(A | B) is:

P(A | B) =
P(A, B)

P(B)
. (2.1)

An equivalent way of expressing Rule 4 is to multiply both sides
of the equation by P(B), to yield

P(A, B) = P(A | B) · P(B) .

We can use these two versions interchangeably.
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EXPECTED FREQUENCY TREES 
In the previous example, the denominator of 400 was deliberately chosen so that the crucial 

difference comprised a single person. A similar exercise was conducted for the recent revision of 
the advice leaflets for breast cancer screening in the UK. I was on the panel that worked on this 
controversial topic, using evidence from a review of an independent panel (Cancer Research UK, 
2012), and with the approach that the leaflets would present the potential benefits and harms of 
screening, but would not make an explicit recommendation. 

We drew up the ‘expected frequency tree’ shown in Figure 1, comparing the expected 
experience of 200 women with and without screening. A website (Breakthrough Breast Cancer UK, 
2014) that incorporated a similar infographic recently won a 2014 UK Association of Medical 
Research Charities Science Communication Award. 

 

 
 

Figure 1: Expectations for 200 women attending or not attending breast screening every 3 years 
between the ages of 50 and 70. 

 
OUR ‘MANIFESTO’ FOR TEACHING PROBABILITY 

With Dr Jenny Gage of the Millennium Mathematics Project in Cambridge, we have 
developed a ‘manifesto’ for teaching probability that exploits the ideas of narratives, multiple 
representations, natural frequencies, expectation trees and so on. This can all be viewed on the 
Nrich website (NRICH, 2014). 

Put simply, the stages are: 
 

• Start with a problem (necessarily simplified to some extent) 
• Model physically (using simple equipment, such as a die with different coloured faces or small 

coloured cubes) 
• Do experiments (in groups, recording outcomes) 
• Pool empirical data to represent multiple ‘narratives’ as  

• 2 x 2 tables 
• Frequency tree 
• Venn diagram 

ICOTS9 (2014) Plenary Paper Spiegelhalter

- 3 -

Figure 2.1: Two hypothetical cohorts
of 200 women, ages 50-70. The 200
women on the left all go in for mammo-
grams; the 200 on the right do not. The
branches of the tree show how many
women we would expect to experience
various different outcomes. Figure
from: “What can education learn from
real-world communication of risk and
uncertainty?” David Spiegelhalter and
Jenny Gage, University of Cambridge.
Proceedings of the Ninth International

Conference on Teaching Statistics (ICOTS9,
July, 2014). We’re not the only fans of
the picture: it won an award for ex-
cellence in scientific communication
in 2014 from the UK Association of
Medical Research Charities.

To illustrate these rules, we’ll turn to Figure 2.1, which is is the
brainchild of David Spiegelhalter and Jenny Gage of the Univer-
sity of Cambridge. These researchers asked themselves the ques-
tion: how can we present the evidence on the benefits and risks
of screening in a way that doesn’t make an explicit recommenda-
tion, but that helps people reach their own conclusion? The result
of their efforts was a series of probability trees like Figure 2.1, each
one depicting the likely experiences of women with and without
screening.

This particular figure tracks what we’d expect to happen to two
hypothetical cohorts of 200 women, aged 50 to 70. In the cohort
of 200 on the left, all women are screened; while in the cohort of
200 on the right, none are screened. The expected results for each
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cohort are slightly different: on the right, we expect 1 fewer death,
and 3 extra unnecessary screenings, versus the left.

Just about every major concept in probability is represented in
this picture.

Expected value. In a group of 200 women, how many would we
expect to get breast cancer? Our best guess, or expected value, is
about 15, regardless of whether they get screened or not.

Probability. How likely is breast cancer for a typical woman?
Fifteen cases of cancer in a cohort of 200 women means that an
average woman aged 50-70 has a 7.5% chance of getting breast
cancer (15/200 = 0.075). This is like the NP rule in reverse: if E is
the expected value (here 15), then the probability is P = E/N.

Joint probability. Suppose that a typical woman does not go for
a screening mammogram. How likely is she to get breast cancer
and to die from it? In the cohort of 200 unscreened women on the
right, 4 are expected to get breast cancer and die from it. Thus the
risk for a typical woman is about 4/200 = 0.02, or 2%.

Conditional probability. Suppose that a woman decides to forego
screening. If she then goes on to develop breast cancer, how likely
is she to die from that cancer? In the unscreened cohort, 15 women
are expected to get breast cancer. Of these 15 women, 4 are ex-
pected to die from their cancer. Thus for an unscreened 50-70 year-
old woman, the risk of dying from breast cancer, given that she
develops breast cancer in the first place, is about 4/15, or about
27%. (Among screened women, this figure is 3/15, or 20%.)

Let’s explicitly calculate this using the rule conditional probabil-
ity (Equation 2.1, on page 11) instead. The rule says

P(survives | gets cancer) =
P(gets cancer and survives)

P(gets cancer)
.

We’ll take this equation piece by piece.

• Out of 200 women, we expect that 15 will develop cancer.
This is the denominator in our equation:

P(gets cancer) =
15

200
.
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• Out of 200 women, we expect that 11 will develop cancer and
survive. This is the numerator in our equation:

P(gets cancer and survives) =
11

200
.

• Therefore, using the rule for conditional probability,

P(survives | cancer) =
11/200
15/200

= 11/15 .

Example: Abraham Wald and the WWII Bombers

During World War II, the size of the Allied air campaign over
Europe was truly staggering. Every morning, huge squadrons
of B-17 Flying Fortress bombers, each with a crew of 10 men,
would take off from their air bases in the south of England, to
make their way across the Channel and onwards to their targets in
Germany. By 1943, they were dropping nearly 1 million pounds of
bombs per week. At its peak strength, in 1944, the U.S. Army Air
Forces (AAF) had 80,000 aircraft and 2.6 million people—4% of the
U.S. male population—in service.

As the air campaign escalated, so too did the losses. In 1942,
the AAF lost 1,727 planes; in 1943, 6,619; and in 1944, 20,394. And
the bad days were very bad. In a single mission over Germany
in August of 1943, 376 B-17 bombers were dispatched from 16
different air bases in the south of England, in a joint bombing raid
on factories in Schweinfurt and Regensburg. Only 316 planes came
back—a daily loss rate of 16%. Some units were devastated; the
381st Bomb Group, flying out of RAF Ridgewell, lost 9 of its 20
bombers that day.2 2 Numbers taken from Statistical Ab-

stract of the United States, U.S. Census
Bureau, (1944, 1947, 1950); and the
Army Air Forces Statistical Digest
(World War II), available at archive.org.

Like Yossarian in Catch-22, World War II airmen were painfully
aware that each combat mission was a role of the dice. What’s
more, they had to complete 25 missions to be sent home. With
such poor chances of returning from a single mission, they could
be forgiven for thinking that they’d been sent to England to die.

But in the face of these bleak odds, the crews of the B-17s had at
least three major defenses.

1. Their own tail and turret gunners, to defend the plane below
and from the rear.

2. Their fighter escorts: the squadrons of P-47 Thunderbolts,
RAF Spitfires, and P-51 Mustangs sent along to protect the
bombers from the Luftwaffe.

https://archive.org/details/ArmyAirForcesStatisticalDigestWorldWarII
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3. A Hungarian-American statistician named Abraham Wald.

Figure 2.2: Abraham Wald.

Abraham Wald never shot down a Messerschmitt or even saw
the inside of a combat aircraft. Nonetheless, he made an out-
sized contribution to the Allied war effort, and no doubt saved
the lives of many American bomber crews, using an equally potent
weapon: conditional probability.

Where should the military reinforce its planes?

Abraham Wald was born in 1902 in Austria-Hungary, where he
went on to earn a Ph.D. in mathematics from the University of
Vienna. Wald was Jewish, and when the Nazis invaded in 1938,
he—like so many brilliant European mathematicians and scientists
of that era—fled to America.

Wald soon went to work as part of the Applied Mathematics
Panel, which had been convened by order of President Roosevelt
to function as something of a mathematical tech-support hotline
for the U.S. military. Here’s the problem Wald analyzed.3 While 3 Distilled from: Mangel and

Samaniego, “Abraham Wald’s work
on aircraft survivability.” Journal of the

American Statistical Association 79 (386):
259-67.

some airplanes came back from bombing missions in Germany
unscathed, many others had visibly taken hits from enemy fire. At
some point, a clever person, whose identity is lost to history, had
the idea of analyzing the distribution of these hits over the surface
of the returning planes. The thinking was that, if you could find
patterns in where the B-17s were taking enemy fire, you could
figure out where to reinforce them with extra armor, to improve
survivability. (You couldn’t reinforce them everywhere, or they
would be too heavy to fly.)

Researchers at the Center for Naval Analyses took this idea and
ran with it. They examined data on hundreds of damaged air-
planes that had returned from bombing runs in Germany. They
found a very striking pattern4 in where the planes had taken en-

4 Alas, the actual data used in the
original analyses cannot be located. But
Wald wrote a report for the Navy on
his methods, and we have attempted
to simulate a data set that hews as
closely as possible to the assumptions
and (patchy) information that he
provides in that report (“A Method of
Estimating Plane Vulnerability Based
on Damage of Survivors”, from 1943).
These and subsequent numbers are for
hypothetical cohort of 800 airplanes, all
taking damage.

emy fire. It looked something like this:

Location Number of planes

Engine 53
Cockpit area 65
Fuel system 96

Wings, fuselage, etc. 434

If you turn those frequencies into probabilities, so that the num-
bers sum to 1, you get the numbers in the table below.
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Location Probability of hit

Engine 0.08
Cockpit area 0.10
Fuel system 0.15

Wings, fuselage, etc. 0.67

Thus of all the planes that took hits and made it back to base,
67% of them had taken those hits on the wings and fuselage.

P(hit on wings or fuselage | returns safely) ⇡ 0.67 .

But that’s the right answer to the wrong question. Wald recog-
nized that this number suffered from a crucial flaw: it only included

data on the survivors. The planes that had been shot down were
missing from the analysis—and only the pattern of bullet holes
on those missing planes could definitively tell the story of a B-17’s
vulnerabilities.

Instead, he recognized that it was essential to calculate the
inverse probability, namely

P(returns safely | hit on wings or fuselage) = ?

This might be a very different number. Remember: P(practices hard |
plays in NBA) ⇡ 1, while P(plays in NBA | practices hard) ⇡ 0.
Conditional probabilities aren’t symmetric.

Of course, Wald had no data on the planes that had been shot
down. Therefore, to actually calculate the probability P(returns safely |
hit on wings or fuselage) required that Wald approach the data set
like a forensic scientist. Essentially, he had to reconstruct the typi-
cal encounter of a B-17 with an enemy fighter, using only the mute
testimony of the bullet holes on the planes that had made it back,
coupled with some educated guessing. So Wald went to work. He
analyzed the likely attack angle of enemy fighters. He chatted with
engineers. He studied the properties of a shrapnel cloud from a
flak gun. He suggested to the army that they fire thousands of
dummy bullets at a plane sitting on the tarmac. And yes, he did a
lot of math.5 5 We don’t go into detail on Wald’s

methods here, which were very com-
plex. But later statisticians have taken
a second look at those methods, with
the hindsight provided by subsequent
advances in the field. They have con-
cluded, very simply: “Wald’s treatment
of these problems was definitive.”
(Mangel and Samaniego, ibid.)

Remarkably, when all was said and done, Wald was able to
reconstruct an estimate for the joint frequencies for the two distinct
types of events that each airplane experienced: where it took a hit,
and whether it returned home safely. In other words, although
Wald couldn’t bring the missing planes back into the air, he could
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bring their statistical signature back into the data set. For our
hypothetical cohort of 800 bombers that took damage, Wald’s best
guess would have looked something like this:

Returned Shot down

Engine 53 57
Cockpit area 65 46
Fuel system 96 16

Wings, fuselage, etc. 434 33

Table 2.1: An example of how Abra-
ham Wald could have reconstructed
the joint frequency distribution over hit
type and outcome for our hypothetical
cohort of 800 planes taking enemy fire.

For example, Wald’s method would have estimated that 53 of the
800 planes, or 6.6% overall, experienced the joint event (hit type
= engine, outcome = returned home safely). You’ll notice that the
numbers in the left column correspond exactly to the table given
earlier: the pattern of hits to airplanes that made it back home.
What’s new is the right column: Wald’s forensic reconstruction of
the pattern of hits to planes that had been shot down.

This estimate for the joint frequencies for two random out-
comes, hit type and outcome, now allowed Wald to answer the
right question. Of the 467 planes that had taken hits to wings and
fuselage, 434 of them had returned home, while 33 of them had
not. Thus Wald estimated that the conditional probability of sur-
vival, given a hit to the wings and fuselage, was

P(returns safely | hit on wings or fuselage) =
434

434 + 33
⇡ 0.93 .

It turns out that B-17s were pretty robust to taking hits on the
wings or fuselage.

On the other hand, of the 110 planes that had taken damage to
the engine, only 53 only returned safely. Therefore

P(returns safely | hit on engine) =
53

53 + 57
⇡ 0.48 .

Similarly,

P(returns safely | hit on cockpit area) =
65

65 + 46
⇡ 0.59 .

The bombers were much more likely to get shot down if they took
a hit to the engine or cockpit area.
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Postscript. In the story of Abraham Wald and the missing B-17s,
the path of counterintuitive facts eventually turns a full 360 de-
grees. Imagine asking any random person off the street: “Where
should we put extra armor on airplanes to help them survive en-
emy fire?” We haven’t done this survey, but we strongly suspect
that most thoughtful people would answer: where the pilot and
the engines are! But the data initially seem to suggest otherwise.
This implies that we should turn 180 degrees away from our intu-
ition: if the planes are taking damage on the wings and the fuse-
lage, then let’s put the armor there instead. But that’s wrong, and
the moral of the story is that data alone isn’t enough. You have to
know enough about conditional probability to be able to pose the
right question in the first place.

Conditional probability and recommender systems

The same math that Abraham Wald used to analyze bullet holes
on B-17s also underpins the modern digital economy of films,
television, music, and social media. To give one example: Netflix,
Hulu, and other video-streaming services all use this same math
to examine what shows their users are watching, and apply the
results of their number-crunching to recommend new shows.

To see how this works, suppose that you’re designing the
movie-recommendation algorithm for Netflix, and you have ac-
cess to the entire Netflix database, showing which customers have
liked which films—for example, by assigning a film a five-star
rating. Your goal is to leverage this vast data resource to make au-
tomated, personalized movie recommendations. The better these
recommendations are, the more likely your customers are to keep
their accounts on auto-pay.

You decide to start with an easy case: assessing how probable it
is that a user will like the film Saving Private Ryan (event A), given
that the same user has liked the HBO series Band of Brothers (event
B). This is almost certainly a good bet: both are epic dramas about
the Normandy invasion and its aftermath. Therefore, you might
think: job done! Recommend away.

For this particular pair of shows, fine. But keep in mind that
you want to be able to do this kind of thing automatically. It
would not be cost effective to put a human in the loop here, la-
boriously tagging all possible pairs of movies for similar themes
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or content—to say nothing of all of the other stuff that might make
two different films appeal to the same person.

As with Abraham Wald and the missing bombers, it’s all about
asking the right question. The key insight here is to frame the
problem in terms of conditional probability. Suppose that, for
some pair of films A and B, the probability P(random user likes A |
random user likes B) is high—say, 80%. Now we learn that Linda
liked film B, but hasn’t yet seen film A. Wouldn’t A be a good
recommendation? Based on her liking of A, there’s an 80% chance
she’ll like it.

But how can we learn P(likes A | likes B)? This is where your
database, coupled with the rule for conditional probability, comes
in handy. Suppose that there are 5 million people in your database
who have seen both Saving Private Ryan and Band of Brothers, and
that the ratings data on these 5 million users looks like this:

Liked Band of

Brothers

Didn’t like

Liked Saving Private Ryan 2.8 million 0.3 million
Didn’t like 0.7 million 1.2 million

Once again, we have information on two random outcomes: A =
whether a user liked Saving Private Ryan, and B = whether the user
liked Band of Brothers. From this information, we can easily work
out the conditional probability that we need. Of the 5 million users
in the database who have watched both programs, 2.8 + 0.7 = 3.5
million of them liked Band of Brothers. Of these 3.5 million people,
2.8 million (or 80%) also liked Saving Private Ryan. Therefore,

P(liked Saving Private Ryan | liked Band of Brothers) =
2.8 million
3.5 million

= 0.8 .

Note that you could also jump straight to the math, and use the
rule for conditional probabilities (Equation 2.1, on page 11), like
this:

P(A | B) =
P(A, B)

P(B)
=

2.8/5
(2.8 + 0.7)/5

= 0.8 .

You’d get the same answer in the end.
The key thing that makes this approach work so well is that

it’s automatic. Computers aren’t very good (yet) at automatically
scanning films for thematic content. But they’re brilliant at cal-
culating conditional probabilities from a vast database of users’
movie-watching histories.
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A BA and B

Figure 2.3: A Venn diagram depicting
the addition rule for probabilities.

The addition rule

The addition rule tells us how to compute the probability of “ei-
ther/or” type events. It’s easy to do this for an either/or event
like (Astros win World Series or Cubs win World Series). What
makes this easy is that these two events are mutually exclusive.
Therefore, to compute the probability of either one happening
(i.e. the union of the two events), we sum the probabilities of the
individual events.

But what about events that aren’t mutually exclusive? We can-
not, for example, directly use this rule to compute a probability
such as P([snow on Christmas eve] or [snow on Christmas day]),
because it is possible for both events to occur in the same year.

For “either/or” events like these, we need a more general rule,
usually called the addition rule. The addition rule says that, for any
two events A and B, the probability that either A or B will happen
is

P(A or B) = P(A) + P(B)� P(A, B) , (2.2)

where P(A, B) is the joint probability of A and B.
It’s easy to visualize the addition rule using a Venn diagram.

Imagine throwing darts at the rectangular area in Figure 2.3. What
is P(A or B)—the probability that a randomly thrown dart will
land either in the blue oval (A) or the red oval (B)?

If we assume that the outer rectangle has total area 1, then
this probability is just the total area covered by the union of the
two ovals (A [ B). To calculate this area, we can start by adding
the areas of the blue oval and red ovals together. But then we’ve
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double-counted the purple area of overlap: once for the A oval,
and once for the B oval. So we have to subtract this area back off,
to correct for the double-counting:

Area of A [ B = (Area of A) + (Area of B)� (Area of A \ B) .

The overlap is written A \ B and read alound as “A intersect B.”
You’ll notice that this simple formula parallels the addition rule

for probabilities,

P(A or B) = P(A) + P(B)� P(A, B) ,

which you can think of in exactly the same way: add the prob-
abilities for the two events, then subtract off the bit that you’ve
double-counted.


