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Simple Linear Regression: Predictions and Uncertainty

Two things that we might want to know:

I What value of Y can we expect for a given X?

I How sure are we about this prediction (or forecast)? That is,

how different could Y be from what we expect?

Our goal is to measure the accuracy of our forecasts or how much

uncertainty there is in the forecast. One method is to specify a

range of Y values that are likely, given an X value.

Prediction Interval: probable range of Y values for a given X

We need the conditional distribution of Y given X .
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Conditional Distributions vs the Marginal Distribution

For example, consider our house price data. We can look at the

distribution of house prices in “slices” determined by size ranges:
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Conditional Distributions vs the Marginal Distribution

What do we see?

The conditional distributions are less variable (narrower boxplots)

than the marginal distribution.

Variation in house sizes expains a lot of the original variation in

price. What does this mean about SST, SSR, SSE, and R2 from

last time?
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Conditional Distributions vs the Marginal Distribution

When X has no predictive power, the story is different:
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Probability models for prediciton

“Slicing” our data is an awkward way to build a prediction and

prediction interval (Why 500sqft slices and not 200 or 1000?

What’s the tradeoff between large and small slices?)

Instead we build a probability model (e.g., normal distribution).

Then we can say something like “with 95% probability the

prediction error will be within ±$28, 000”.

We must also acknowledge that the “fitted” line may be fooled by

particular realizations of the residuals (an unlucky sample)
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The Simple Linear Regression Model

Simple Linear Regression Model: Y = β0 + β1X + ε

ε ∼ N(0, σ2)

I β0 + β1X represents the “true line”; The part of Y that

depends on X .

I The error term ε is independent “idosyncratic noise”; The

part of Y not associated with X .
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The Simple Linear Regression Model

Y = β0 + β1X + ε

1.6 1.8 2.0 2.2 2.4 2.6

16
0

18
0

20
0

22
0

24
0

26
0

x

y

The conditional distribution for Y given X is Normal (why?):

(Y |X = x) ∼ N(β0 + β1x , σ
2).
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The Simple Linear Regression Model – Example

You are told (without looking at the data) that

β0 = 40; β1 = 45; σ = 10

and you are asked to predict price of a 1500 square foot house.

What do you know about Y from the model?

Y = 40 + 45(1.5) + ε

= 107.5 + ε

Thus our prediction for the price is E (Y | X = 1.5) = 107.5(the

conditional expected value), and since

(Y | X = 1.5) ∼ N(107.5, 102) a 95% Prediction Interval for Y is

87.5 < Y < 127.5 9



Summary of Simple Linear Regression

The model is

Yi = β0 + β1Xi + εi

εi ∼ N(0, σ2).

The SLR has 3 basic parameters:

I β0, β1 (linear pattern)

I σ (variation around the line).

Assumptions:

I independence means that knowing εi doesn’t affect your views

about εj

I identically distributed means that we are using the same

normal distribution for every εi 10



Conditional Distributions vs the Marginal Distribution

You know that β0 and β1 determine the linear relationship between

X and the mean of Y given X .

σ determines the spread or variation of the realized values around

the line (i.e., the conditional mean of Y )
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Learning from data in the SLR Model

SLR assumes every observation in the dataset was generated by

the model:

Yi = β0 + β1Xi + εi

This is a model for the conditional distribution of Y given X.

We use Least Squares to estimate β0 and β1:

β̂1 = b1 = rxy ×
sy
sx

β̂0 = b0 = Ȳ − b1X̄
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Estimation of Error Variance

We estimate σ2 with:

s2 =
1

n − 2

n∑
i=1

e2i =
SSE

n − 2

(2 is the number of regression coefficients; i.e. 2 for β0 and β1).

We have n − 2 degrees of freedom because 2 have been “used up”

in the estimation of b0 and b1.

We usually use s =
√

SSE/(n − 2), in the same units as Y . It’s

also called the regression or residual standard error.

13



Finding s from R output

summary(fit)

##

## Call:

## lm(formula = Price ~ Size, data = housing)

##

## Residuals:

## Min 1Q Median 3Q Max

## -30.425 -8.618 0.575 10.766 18.498

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 38.885 9.094 4.276 0.000903 ***

## Size 35.386 4.494 7.874 2.66e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 14.14 on 13 degrees of freedom

## Multiple R-squared: 0.8267, Adjusted R-squared: 0.8133

## F-statistic: 62 on 1 and 13 DF, p-value: 2.66e-06
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One Picture Summary of SLR

I The plot below has the house data, the fitted regression line

(b0 + b1X ) and ±2 ∗ s...

I From this picture, what can you tell me about b0, b1 and s2?
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Sampling Distribution of Least Squares Estimates

How much do our estimates depend on the particular random

sample that we happen to observe? Imagine:

I Randomly draw different samples of the same size.

I For each sample, compute the estimates b0, b1, and s.

(just like we did for sample means in Section 1.4)

If the estimates don’t vary much from sample to sample, then it

doesn’t matter which sample you happen to observe.

If the estimates do vary a lot, then it matters which sample you

happen to observe.
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Sampling Distribution of Least Squares Estimates
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Sampling Distribution of Least Squares Estimates
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Sampling Distribution of b1

The sampling distribution of b1 describes how estimator b1 = β̂1

varies over different samples with the X values fixed.

It turns out that b1 is normally distributed (approximately):

b1 ∼ N(β1, s
2
b1).

I b1 is unbiased: E [b1] = β1.

I sb1 is the standard error of b1. In general, the standard error

of an estimate is its standard deviation over many randomly

sampled datasets of size n. It determines how close b1 is to β1

on average.

I This is a number directly available from the regression output.
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Sampling Distribution of b1

Can we intuit what should be in the formula for sb1?

I How should s figure in the formula?

I What about n?

I Anything else?

s2b1 =
s2∑

(Xi − X̄ )2
=

s2

(n − 1)s2x

Three Factors:

sample size (n), error variance (s2), and X -spread (sx).
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Sampling Distribution of b0

The intercept is also normal and unbiased: b0 ∼ N(β0, s
2
b0

).

s2b0 = Var(b0) = s2
(

1

n
+

X̄ 2

(n − 1)s2x

)

What is the intuition here?
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Confidence Intervals

Since b1 ∼ N(β1, s
2
b1

), Thus:

I 68% Confidence Interval: b1 ± 1× sb1

I 95% Confidence Interval: b1 ± 2× sb1

I 99% Confidence Interval: b1 ± 3× sb1

Same thing for b0

I 95% Confidence Interval: b0 ± 2× sb0

The confidence interval provides you with a set of plausible

values for the parameters
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Finding standard errors from R output

summary(fit)

##

## Call:

## lm(formula = Price ~ Size, data = housing)

##

## Residuals:

## Min 1Q Median 3Q Max

## -30.425 -8.618 0.575 10.766 18.498

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 38.885 9.094 4.276 0.000903 ***

## Size 35.386 4.494 7.874 2.66e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 14.14 on 13 degrees of freedom

## Multiple R-squared: 0.8267, Adjusted R-squared: 0.8133

## F-statistic: 62 on 1 and 13 DF, p-value: 2.66e-06
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Confidence intervals in R

In R, you can extract confidence intervals easily:

confint(fit, level=0.95)

## 2.5 % 97.5 %

## (Intercept) 19.23850 58.53087

## Size 25.67709 45.09484

These are close to what we get by hand, but not exactly the same:

38.885 - 2*9.094; 38.885 + 2*9.094;

## [1] 20.697

## [1] 57.073

35.386 - 2*4.494; 35.386 + 2*4.494;

## [1] 26.398

## [1] 44.374
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Confidence intervals in R

Why don’t our answers agree?

R is using a slightly more accurate approximation to the sampling

distribution of the coefficients, based on the t distribution.

The difference only matters in small samples, and if it changes

your inferences or decisions then you probably need more data!
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Testing

Suppose we want to assess whether or not β1 equals a proposed

value β01 . This is called hypothesis testing.

Formally we test the null hypothesis:

H0 : β1 = β01

vs. the alternative

H1 : β1 6= β01

(For example, testing β1 = 0 vs. β1 6= 0 is testing whether X is

predictive of Y under our SLR model assumptions.)
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Testing

That are 2 ways we can think about testing a regression coefficient:

1. Building a test statistic... the t-stat,

t =
b1 − β01

sb1

This quantity measures how many standard errors (SD of b1)

the estimate (b1) is from the proposed value (β01).

If the absolute value of t is greater than 2, we need to worry

(why?)... we reject the null hypothesis.
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Testing

2. Looking at the confidence interval. If the hypothesized value is

outside the confidence interval you reject the null hypothesis.

Notice that this is equivalent to the t-stat. An absolute value

for t greater than 2 implies that the proposed value is outside

the confidence interval... therefore reject.

In fact, a 95% confidence interval contains all the values for a

parameter that are not rejected by hypothesis test with a false

positive rate of 5%

This is my preferred approach for the testing problem. You

can’t go wrong by using the confidence interval!
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Example: Mutual Funds

Let’s investigate the performance of the Windsor Fund, an

aggressive large cap fund by Vanguard...
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The plot shows 6mos of daily returns for Windsor vs. the S&P500
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Example: Mutual Funds

Consider the following regression model for the Windsor mutual

fund:

rw = β0 + β1rsp500 + ε

Let’s first test β1 = 0

H0 : β1 = 0. Is the Windsor fund related to the market?

H1 : β1 6= 0
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Example: Mutual Funds

##

## Call:

## lm(formula = Windsor ~ SP500, data = windsor)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.42557 -0.11035 0.01057 0.11915 0.50539

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.01027 0.01602 -0.641 0.523

## SP500 1.07875 0.03498 30.841 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.1777 on 124 degrees of freedom

## Multiple R-squared: 0.8847,Adjusted R-squared: 0.8837

## F-statistic: 951.2 on 1 and 124 DF, p-value: < 2.2e-16
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Example: Mutual Funds

The approximate 95% confidence interval is

1.079± 2× 0.035 = (1.009.1.149), so we’d reject H0 : β = 0

confint(fit, level=0.95)

## 2.5 % 97.5 %

## (Intercept) -0.04197045 0.021435

## SP500 1.00951622 1.147976

The t− statistic is (1.079− 0)/0.035 = 30.8 (see also the R

output) - reject!
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Example: Mutual Funds

Now let’s test β1 = 1. What does that mean?

H0 : β1 = 1 Windsor is as risky as the market.

H1 : β1 6= 1 and Windsor softens or exaggerates market moves.

We are asking whether Windsor moves in a different way than the

market (does it exhibit larger/smaller changes than the market, or

about the same?).
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Example: Mutual Funds

The approximate 95% confidence interval still

1.079± 2× 0.035 = (1.009.1.149), so we’d reject H0 : β = 1 as

well.

confint(fit, level=0.95)

## 2.5 % 97.5 %

## (Intercept) -0.04197045 0.021435

## SP500 1.00951622 1.147976

The t− statistic is (1.079− 1)/0.035 = 2.26 - reject!

But... 34



Testing – Why I like giving an interval

I What if the Windsor beta estimate had been 1.07 with a CI of

(0.99, 1.14)? Would our assessment of the fund’s market risk

really change?

I Now suppose in testing H0 : β1 = 1 you got a t-stat of 6 and

the confidence interval was

[1.00001, 1.00002]

Do you reject H0 : β1 = 1 and conclude Windsor is riskier

than the market? Could you justify that to your boss?

Probably not! (why?)
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Testing – Why I like giving an interval

I Now, suppose in testing H0 : β1 = 1 you got a t-stat of -0.02

and the confidence interval was

[−100, 100]

Do you “accept” H0 : β1 = 1? Could you justify that to you

boss? Probably not! (why?)

The confidence interval is your friend when it comes to testing

regression coefficients
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P-values

I The p-value provides a measure of how weird your estimate is

if the null hypothesis is true

I Small p-values are evidence against the null hypothesis

I In the AVG vs. R/G example... H0 : β1 = 0. How weird is our

estimate of b1 = 33.57?

I Remember: b1 ∼ N(β1, s
2
b1

)... If the null was true (β1 = 0),

b1 ∼ N(0, s2b1)
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P-values

I Where is 33.57 in the picture below?
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b1 (if β1=0)

The p-value is the probability of seeing b1 equal or greater than

33.57 in absolute terms. Here, p-value=0.000000124!!

Small p-value = bad null 38



P-values - Windsor fund
R will report p-values for testing each coefficient at βj = 0, in the
column Pr(> |t|)
##

## Call:

## lm(formula = Windsor ~ SP500, data = windsor)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.42557 -0.11035 0.01057 0.11915 0.50539

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.01027 0.01602 -0.641 0.523

## SP500 1.07875 0.03498 30.841 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.1777 on 124 degrees of freedom

## Multiple R-squared: 0.8847,Adjusted R-squared: 0.8837

## F-statistic: 951.2 on 1 and 124 DF, p-value: < 2.2e-16
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P-values for other null hypotheses

We have to do other tests ourselves: To get a p-value for

H0 : β1 = q versus H0 : β1 6= q, note that b1 ∼ N(q, se(b1))

(approximately) under the null, and

(b1 − q)

se(b1)
∼ N(0, 1)
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P-values for other null hypotheses

Under H0, prob. of seeing a coefficient at least as extreme as b1 is:

Pr(|Z | > |t|), t = (b1 − q)/se(b1)

z

−4 −3 −2 −1 0 1 2 3 4

tstat=2.26

The p-value for testing H0 : β = 1 in the Windsor data is

2*pnorm(abs(1.079 - 1)/0.035, lower.tail=FALSE)

## [1] 0.02399915 41



Testing – Summary

I Large t or small p-value mean the same thing...

I p-value < 0.05 is equivalent to a t-stat > 2 in absolute value

I Small p-value means the data at hand are unlikely to be

observed if the null hypothesis was true...

I Bottom line, small p-value → REJECT! Large t → REJECT!

I But remember, always look at the confidence interveal!
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Prediction/Forecasting under Uncertainty

The conditional forecasting problem: Given covariate Xf and

sample data {Xi ,Yi}ni=1, predict the “future” observation yf .

The solution is to use our LS fitted value: Ŷf = b0 + b1Xf .

This is the easy bit. The hard (and very important!) part of

forecasting is assessing uncertainty about our predictions.
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Forecasting: Plug-in Method

A common approach is to assume that β0 ≈ b0, β1 ≈ b1 and

σ ≈ s... in this case the 95% plug-in prediction interval is:

(b0 + b1Xf )± 2× s

It’s called “plug-in” because we just plug-in the estimates (b0, b1

and s) for the unknown parameters (β0, β1 and σ).
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Forecasting: Better intervals in R

But remember that you are uncertain about b0 and b1! As a

practical matter if the confidence intervals are big you should be

careful! R will give you a larger (and correct) prediction interval.

A larger prediction error variance (high uncertainty) comes from

I Large s (i.e., large ε’s).

I Small n (not enough data).

I Small sx (not enough observed spread in covariates).

I Large difference between Xf and X̄ .
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Forecasting: Better intervals in R

fit = lm(Price~Size, data=housing)

# Make a data.frame with some X_f values

# (X values where we want to forecast)

newdf = data.frame(Size=c(1, 1.85, 3.2, 4.1))

predict(fit, newdata = newdf,

interval = "prediction", level = 0.95)

## fit lwr upr

## 1 74.27065 41.65499 106.8863

## 2 104.34871 72.80283 135.8946

## 3 152.11976 117.97174 186.2678

## 4 183.96713 145.61441 222.3199
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Forecasting: Better intervals in R
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I Red lines: prediction intervals

I Green lines: “plug-in”prediction intervals
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House Data – one more time!

I R2 = 82%

I Great R2, we are happy using this model to predict house

prices, right?
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House Data – one more time!

I But, s = 14 leading to a predictive interval width of about

US$60,000!! How do you feel about the model now?

I As a practical matter, s is a much more relevant quantity than

R2. Once again, intervals are your friend!
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