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Regression: General Introduction

I Regression analysis is the most widely used statistical tool for

understanding relationships among variables

I It provides a conceptually simple method for investigating

functional relationships between one or more factors and an

outcome of interest

I The relationship is expressed in the form of an equation or a

model connecting the response or dependent variable and one

or more explanatory or predictor variables
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Why?

Straight prediction questions:

I For how much will my house sell?

I How many runs per game will the Red Sox score this year?

I Will this person like that movie? (e.g., Netflix)

Explanation and understanding:

I What is the impact of getting an MBA on lifetime income?

I How do the returns of a mutual fund relate to the market?

I Does Walmart discriminate against women when setting

salaries?
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Example: Predicting House Prices

Problem:

I Predict market price based on observed characteristics

Solution:

I Look at property sales data where we know the price and

some observed characteristics.

I Build a decision rule that predicts price as a function of the

observed characteristics.
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Predicting House Prices

What characteristics do we use?

We have to define the variables of interest and develop a specific

quantitative measure of these variables

I Many factors or variables affect the price of a house

I size

I number of baths

I garage

I neighborhood

I ...
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Predicting House Prices

To keep things super simple, let’s focus only on size.

The value that we seek to predict is called the

dependent (or output) variable, and we denote this:

I Y , e.g. the price of the house (thousands of dollars)

The variable that we use to aid in prediction is the

independent, explanatory, or input variable, and this is labelled

I X , e.g. the size of house (thousands of square feet)
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Predicting House Prices

What does this data look like?
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Predicting House Prices

It is much more useful to look at a scatterplot:

plot(Price ~ Size, data = housing)
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In other words, view the data as points in the X × Y plane.
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Linear Prediction

Appears to be a linear relationship between price and size:

As size goes up, price goes up.

The line shown was fit by the “eyeball” method.
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Linear Prediction

Recall that the equation of a line is:

Y = b0 + b1X

Where b0 is the intercept and b1 is the slope.

The intercept value is in units of Y ($1,000).

The slope is in units of Y per units of X ($1,000/1,000 sq ft).

10



Linear Prediction

Y 

X 

b0 

2 1 

b1 

Y = b0 + b1X 

Our “eyeball” line has b0 = 35, b1 = 40.
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Linear Prediction

Can we do better than the eyeball method?

We desire a strategy for estimating the slope and intercept

parameters in the model Ŷ = b0 + b1X

A reasonable way to fit a line is to minimize the amount by which

the fitted value differs from the actual value.

This amount is called the residual.
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Linear Prediction

What is the “fitted value”?

Yi 

Xi 

Ŷi 

The dots are the observed values and the line represents our fitted

values given by Ŷ = b0 + b1X .
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Linear Prediction

What is the “residual”’ for the ith observation’?

Yi 

Xi 

Ŷi 
ei = Yi – Ŷi = Residual i  

We can write Yi = Ŷi + (Yi − Ŷi ) = Ŷi + ei .
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Least Squares
Ideally we want to minimize the size of all residuals:

I If they were all zero we would have a perfect line.

I Trade-off between moving closer to some points and at the

same time moving away from other points.

The line fitting process:

I Take each residual ei and assign it a weight e2
i . Bigger

residuals = bigger “mistakes” = higher weights

I Minimize the total of these weights to get best possible fit.

Least Squares chooses b0 and b1 to minimize
∑N

i=1 e
2
i

N∑
i=1

e2
i = e2

1 +e2
2 +· · ·+e2

N = (Y1−Ŷ1)2+(Y2−Ŷ2)2+· · ·+(YN−ŶN)2
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Least Squares

LS chooses a different line from ours:

I b0 = 38.88 and b1 = 35.39

I What do b0 and b1 mean again?

LS line 

Our line 
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Least Squares in R

The lm command fits linear (regression) models

fit = lm(Price ~ Size, data = housing)

print(fit)

##

## Call:

## lm(formula = Price ~ Size, data = housing)

##

## Coefficients:

## (Intercept) Size

## 38.88 35.39
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fit = lm(Price ~ Size, data = housing)

summary(fit)

##

## Call:

## lm(formula = Price ~ Size, data = housing)

##

## Residuals:

## Min 1Q Median 3Q Max

## -30.425 -8.618 0.575 10.766 18.498

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 38.885 9.094 4.276 0.000903 ***

## Size 35.386 4.494 7.874 2.66e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 14.14 on 13 degrees of freedom

## Multiple R-squared: 0.8267,Adjusted R-squared: 0.8133

## F-statistic: 62 on 1 and 13 DF, p-value: 2.66e-06
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2nd Example: Offensive Performance in Baseball

1. Problems:

I Evaluate/compare traditional measures of offensive

performance

I Help evaluate the worth of a player

2. Solutions:

I Compare prediction rules that forecast runs as a function of

either AVG (batting average), SLG (slugging percentage) or

OBP (on base percentage)
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2nd Example: Offensive Performance in Baseball

20



Baseball Data – Using AVG
Each observation corresponds to a team in MLB. Each quantity is

the average over a season.

I Y = runs per game; X = AVG (batting average)

LS fit: Runs/Game = -3.93 + 33.57 AVG
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Baseball Data – Using SLG

I Y = runs per game

I X = SLG (slugging percentage)

LS fit: Runs/Game = -2.52 + 17.54 SLG 22



Baseball Data – Using OBP

I Y = runs per game

I X = OBP (on base percentage)

LS fit: Runs/Game = -7.78 + 37.46 OBP 23



Baseball Data

I What is the best prediction rule?

I Let’s compare the predictive ability of each model using the

average squared error

1

n

n∑
i=1

e2
i =

∑n
i=1

(
Ŷi − Yi

)2

n
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Place your Money on OBP!

Average Squared Error

AVG 0.083

SLG 0.055

OBP 0.026
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Linear Prediction

Ŷn+1 = b0 + b1xn+1

I b0 is the intercept and b1 is the slope

I We find b0 and b1 using Least Squares

I For a new value of the independent variable OBP (say xn+1)

we can predict the response Yn+1 using the fitted line
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More on Least Squares

From now on, terms “fitted values” (Ŷi ) and “residuals” (ei ) refer

to those obtained from the least squares line.

The fitted values and residuals have some special properties...
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The Fitted Values and X

plot(predict(fit) ~ Size, data = housing, ylab = "fitted values yhat")
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cor(predict(fit), housing$Size)

## [1] 1
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The Residuals and X
plot(resid(fit) ~ Size, data = housing, ylab = "residuals")
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mean(resid(fit)); cor(resid(fit), housing$Size)

## [1] -9.633498e-17

## [1] 2.120636e-17

(i.e., zero). What’s going on here? 29



A Deeper Look at Least Squares Estimates

Least squares estimates have some special properties:

I The fitted values Ŷ and x were very dependent

I The residuals Y − Ŷ and x had no apparent relationship

I The residuals Y − Ŷ had a sample mean of zero

What’s going on? And what exactly are the least squares

estimates?

We need to review sample covariance and correlation
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Covariance
Measure the direction and strength of the linear relationship between Y and X

Cov(Y ,X ) =

∑n
i=1 (Yi − Ȳ )(Xi − X̄ )

n − 1
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Ȳ
I sy = 15.98, sx = 9.7

I Cov(X ,Y ) = 125.9

How do we interpret that?
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Correlation

Correlation is the standardized covariance:

corr(X ,Y ) =
cov(X ,Y )√

s2
x s

2
y

=
cov(X ,Y )

sxsy

The correlation is scale invariant and the units of measurement

don’t matter: It is always true that −1 ≤ corr(X ,Y ) ≤ 1.

This gives the direction (- or +) and strength (0→ 1 in absolute

value)

of the linear relationship between X and Y .
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Correlation

corr(Y ,X ) =
cov(X ,Y )√

s2
x s

2
y

=
cov(X ,Y )

sxsy
=

125.9

15.98× 9.7
= 0.812
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Correlation
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Correlation

Only measures linear relationships:

corr(X ,Y ) = 0 does not mean the variables are not related!
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Also be careful with influential observations...
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The Least Squares Estimates

The values for b0 and b1 that minimize the least squares criterion

are:

b1 = rxy ×
sy
sx

b0 = Ȳ − b1X̄

where,

I X̄ and Ȳ are the sample mean of X and Y

I corr(x , y) = rxy is the sample correlation

I sx and sy are the sample standard deviation of X and Y

These are the least squares estimates of β0 and β1.
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The Least Squares Estimates

The values for b0 and b1 that minimize the least squares criterion

are:

b1 = rxy ×
sy
sx

b0 = Ȳ − b1X̄

How do we interpret these?

I b0 ensures the line goes through (x̄ , ȳ)

I b1 scales the correlation to appropriate units by multiplying

with sy/sx (what are the units of b1?)
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# Computing least squares estimates "by hand"

y = housing$Price; x = housing$Size

rxy = cor(y, x)

sx = sd(x)

sy = sd(y)

ybar = mean(y)

xbar = mean(x)

b1 = rxy*sy/sx

b0 = ybar - b1*xbar

print(b0); print(b1)

## [1] 38.88468

## [1] 35.38596
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# We get the same result as lm()

fit = lm(Price~Size, data=housing)

print(fit)

##

## Call:

## lm(formula = Price ~ Size, data = housing)

##

## Coefficients:

## (Intercept) Size

## 38.88 35.39
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Properties of Least Squares Estimates

Remember from the housing data, we had:

I corr(Ŷ , x) = 1 (a perfect linear relationship)

I corr(e, x) = 0 (no linear relationship)

I mean(e) = 0 (sample average of residuals is zero)
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Why?

What is the intuition for the relationship between Ŷ and e and X?

Lets consider some “crazy”alternative line:
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LS line: 38.9 + 35.4 X

Crazy line: 10 + 50 X
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Fitted Values and Residuals

This is a bad fit! We are underestimating the value of small houses

and overestimating the value of big houses.
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corr(e, x) = -0.7
mean(e) = 1.8

Clearly, we have left some predictive ability on the table!
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Summary: LS is the best we can do!!

As long as the correlation between e and X is non-zero, we could

always adjust our prediction rule to do better.

We need to exploit all of the predictive power in the X values and

put this into Ŷ , leaving no “Xness” in the residuals.

In Summary: Y = Ŷ + e where:

I Ŷ is “made from X” using a linear equation; corr(X , Ŷ ) =

±1.

I e has no linear relationship with X ; corr(X , e) = 0.

I On average (over the sample), our prediction error is zero:

ē =
∑n

i=1 ei = 0.
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Decomposing the Variance

Recall: Variability/variance is a measure of risk, or unpredictability.

We’d like to use information in one variable (X ) to help predict

another (Y )

We can quantify how much the total error or variance goes down

after using information in X ...
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Using a “good” X reduces variability in Y ...
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Using a “bad” X doesn’t

When X has low predictive power, the story is different:

46



Decomposing the Variance

Remember that Y = Ŷ + e

Since Ŷ and e are uncorrelated, i.e. corr(Ŷ , e) = 0,

var(Y ) = var(Ŷ + e) = var(Ŷ ) + var(e)∑n
i=1(Yi − Ȳ )2

n − 1
=

∑n
i=1(Ŷi − ¯̂Y )2

n − 1
+

∑n
i=1(ei − ē)2

n − 1

Given that ē = 0, and the sample mean of the fitted values ¯̂Y = Ȳ

(why?) we get to write:

n∑
i=1

(Yi − Ȳ )2 =
n∑

i=1

(Ŷi − Ȳ )2 +
n∑

i=1

e2
i
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Decomposing the Variance

I SST is measuring total variation in Y /total error in Y using

the simplest prediction Ȳ – i.e., no info about X

I SSR is measuring predictable (via our regression model)

variation in Y – how much our predictions change after

accounting for linear effects of X

I SSE is measuring left over, unpredictable variation in Y
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Decomposing the Variance

Things to note:

I SST is fixed, so as SSR increases, SSE (the total error in our

predictions) goes down.

I SSR describes variation that’s predictable by a linear equation

of X . We could get better SSR (and lower SSE) with

nonlinear functions of X , but we have to be careful – more

soon.
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Decomposing the Variance

(Yi−Ȳ ) = Ŷi + ei−Ȳ
= (Ŷi − Ȳ ) + ei

Week II. Slide 23
Applied Regression Analysis – Fall 2008 
Matt Taddy

Decomposing the Variance – The ANOVA Table
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The Coefficient of Determination R2

The coefficient of determination, denoted by R2,

measures how well the fitted values Ŷ follow Y :

R2 =
SSR

SST
= 1− SSE

SST

I R2 is often called the proportion of variance in Y that is

“explained” by the regression line (in the mathematical – not

scientific – sense!): R2 = 1− Var(e)/Var(Y )

I 0 < R2 < 1

I For simple linear regression, R2 = r2
xy . Similar caveats to

sample correlation apply!
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Explanations and predictions

A better way to think about R2 is as the proportion of variability

– i.e. unpredictablility – in Y that becomes predictable when

using X in a linear regression model.

R2 does not tell you:

I Whether there is/is not any causal relationship between X

and Y (Question: What is the R2 from regressing X on Y )?

I Whether your regression model is a reasonable approximation

of reality

I Whether your model generalizes well outside your sample
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R2 for the Housing Data

summary(fit)

##

## Call:

## lm(formula = Price ~ Size, data = housing)

##

## Residuals:

## Min 1Q Median 3Q Max

## -30.425 -8.618 0.575 10.766 18.498

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 38.885 9.094 4.276 0.000903 ***

## Size 35.386 4.494 7.874 2.66e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 14.14 on 13 degrees of freedom

## Multiple R-squared: 0.8267,Adjusted R-squared: 0.8133

## F-statistic: 62 on 1 and 13 DF, p-value: 2.66e-06

53



R2 for the Housing Data

summary(fit)

##

## Call:

## lm(formula = Price ~ Size, data = housing)

##

## Residuals:

## Min 1Q Median 3Q Max

## -30.425 -8.618 0.575 10.766 18.498

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 38.885 9.094 4.276 0.000903 ***

## Size 35.386 4.494 7.874 2.66e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 14.14 on 13 degrees of freedom

## Multiple R-squared: 0.8267, Adjusted R-squared: 0.8133

## F-statistic: 62 on 1 and 13 DF, p-value: 2.66e-06
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R2 for the Housing Data

anova(fit)

## Analysis of Variance Table

##

## Response: Price

## Df Sum Sq Mean Sq F value Pr(>F)

## Size 1 12393.1 12393.1 61.998 2.66e-06 ***

## Residuals 13 2598.6 199.9

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R2 =
SSR

SST
=

12393.1

2598.6 + 12393.1
= 0.8267
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Back to Baseball

Three very similar, related ways to look at a simple linear

regression... with only one X variable, life is easy!

R2 corr SSE

OBP 0.88 0.94 0.79

SLG 0.76 0.87 1.64

AVG 0.63 0.79 2.49
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