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A First Modeling Exercise

I I have US$ 1,000 invested in the SP500. I need to predict

tomorrow’s value of my portfolio.

I I also want to know how risky my portfolio is, in particular, I

want to know how likely it is that I will lose more than 2% of

my money by the end of tomorrow’s trading session.

I What should I do?
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SP500 - Data

Daily percent returns on the SP500 for Mar 01, 2017 - Sep 01,

2017:
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Data are on the website: https://jaredsmurray.github.io/

sta371g_f17/data/sp500_mar-1-17_to_sep-1-17.csv 3

https://jaredsmurray.github.io/sta371g_f17/data/sp500_mar-1-17_to_sep-1-17.csv
https://jaredsmurray.github.io/sta371g_f17/data/sp500_mar-1-17_to_sep-1-17.csv


I As a first modeling decision, let’s call the random variable

associated with daily returns on the SP500 X and assume

that returns are independent and identically distributed as

X ∼ N(µ, σ2)

I Question: What are the values of µ and σ2 ?

I We need to estimate these values from the sample in hand

(n=129 observations)...
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I Let’s assume that each observation in the sample

{x1, x2, x3, . . . , xn} is independent and distributed according to

the model above, i.e., xi ∼ N(µ, σ2)

I Usual strategy is to estimate µ and σ2, the mean and the

variance of the distribution, via the sample mean (X̄ ) and the

sample variance (s2)... (their sample counterparts)

X̄ =
1

n

n∑
i=1

xi

s2 =
1

n − 1

n∑
i=1

(
xi − X̄

)2
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For the SP500 data in hand, X̄ = 0.03 and s2 = 0.21

xbar = mean(sp500$daily.returns)

s2 = var(sp500$daily.returns)

s = sd(sp500$daily.returns)

print(xbar)

## [1] 0.03302145

print(s2)

## [1] 0.2119474

print(s)

## [1] 0.4603774
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For the SP500 data in hand, X̄ = 0.03 and s2 = 0.21
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I The red line represents our “model”, i.e., the normal

distribution with mean and variance given by the estimated

quantities X̄ and s2.

I What is Pr(X < −2)?
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Estimating Proportions... another modeling example

Your job is to manufacture a part. Each time you make a part, it is

defective or not. Below we have the results from 100 parts you just

made. Yi = 1 means a defect, 0 a good one.

How would you predict the next one?
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There are 18 ones and 82 zeros.
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In this case, it might be reasonable to model the defects as

independent with the same probability p...

We can’t be sure this is right, but, the data looks like the kind of

thing we would get if we had iid draws with

p = Pr(Yi = 1) ≈ 0.18.

If we believe our model, what is the chance that the next 10 parts

are good?

.8210 = 0.137.
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Models, Parameters, Estimates...

In general we talk about unknown quantities using the language of

probability... and the following steps:

I Define the random variables of interest

I Define a model (or probability distribution) that describes the

behavior of the RV of interest

I Based on the data available, we estimate the parameters

defining the model

I We are (almost) ready to describe possible scenarios, generate

predictions, make decisions, evaluate risk, etc...
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Oracle vs SAP Example (understanding variation)
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Oracle vs. SAP

I Do we “buy” the claim from this ad?

I We have a dataset of 81 firms that use SAP...

I The industry average ROE is 15% (also an estimate but let’s

assume it is true)

I We assume that the random variable X represents ROE of

SAP firms and can be described by

X ∼ N(µ, σ2)

X̄ s2

SAP firms 0.1263 0.038

I Well, 0.12
0.15 ≈ 0.8! I guess the ad is correct, right?

I Not so fast... 12



Oracle vs. SAP

I What if we have observed a different sample of size 81?

Would the sample mean have been different?

I Let’s assume the sample we have is a good representation of

the “population” of firms that use SAP...

13



Oracle vs. SAP

I Sampling 81 observations (with replacement) from the

original 81 samples I get a new X̄ = 0.09... I do it again, and

I get X̄ = 0.155... and again X̄ = 0.132...The Bootstrap: why it works

data sample

� ↓ �

bootstrap samples

You are pretending that the emperical data distribution is the

sampling distribution, and using it to draw alternative samples.

7
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Oracle vs. SAP

This procedure is called “bootstrapping”, and it’s easy in R: After

loading the data into a data frame (or a “tibble”) named sap:
library(mosaic)

print(sap)

## # A tibble: 81 x 1

## roe

## <dbl>

## 1 0.25922835

## 2 0.03313982

## 3 0.01278884

## # ... with 78 more rows

sap.boot = do(1000) * {
mean(~roe, data = resample(sap))

} 15



Oracle vs. SAP

I After 1,000 samples here’s the histogram of X̄ ... Now, what

do you think about the ad?
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Note: Pr(X̄ > 0.15) ≈ 0.13
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Sampling Distribution of the Sample Mean

What’s going on here?

I We’re simulating (approximately) the sampling distribution of

the sample mean, i.e., the probability distribution of X̄ - how

does X̄ vary over datasets of size n?

I The sampling distribution quanitifies uncertainty in our

estimates - X̄ 6= µ, but how wrong might we be?

I We have one more important tool for estimating sampling

distributions
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Central Limit Theorem

Consider the mean for a sample of n independent observations of a

random variable: {X1,X2, . . . ,Xn}

Suppose that E (Xi ) = µ and Var(Xi ) = σ2

I E (X̄ ) = 1
n

∑
E (Xi ) = µ

I Var(X̄ ) = Var
(

1
n

∑
Xi

)
= 1

n2

∑
Var (Xi ) =

σ2

n

For large n,

X̄ ∼ N

(
µ,
σ2

n

)
(approximately)
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Sampling Distribution of Sample Mean

I It turns out that s2 is a good proxy for σ2, so we can

approximate the sampling distribution by

X̄ ∼ N

(
µ,

s2

n

)

I We call
√

s2

n the standard error of X̄ ... it is a measure of its

variability... I like the notation

sX̄ =

√
s2

n
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Sampling Distribution of Sample Mean

X̄ ∼ N
(
µ, s2

X̄

)
I X̄ is unbiased... E (X̄ ) = µ. On average, X̄ is right!

I X̄ is consistent... as n grows, s2
X̄
→ 0, i.e., with more

information, eventually X̄ correctly estimates µ!
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Keep track of your s’s: s2 and s2
X̄

In our N(µ, σ2) model...

I s2 is an estimate of the observation variance σ2, or how close

a single observation tends to be to its expected value µ.

I s2
X̄

is an estimate of the sample mean (X̄ )’s variance σ2/n,

or how close the sample mean of n observations tends to

be to its expected value µ

Roughly:

I s2 estimates uncertainty in future observations if we knew µ

I s2
X̄

estimates uncertainty about µ
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Back to the Oracle vs. SAP example

Back to our simulation...
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The two approximations to the sampling distribution are very close.
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Confidence Intervals

X̄ ∼ N
(
µ, s2

X̄

)
so...

(X̄ − µ) ∼ N
(
0, s2

X̄

)
right?

I What is a good prediction for µ? What is our best guess??

X̄

I How do we make mistakes? How far from µ can we be??

95% of the time ±2× sX̄

I [X̄ ±2× sX̄ ] gives a 95% confidence interval for µ. In

general, you can think of this as a set of plausible values for

µ
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Oracle vs. SAP example... one more time

In this example, X̄ = 0.1263, s2 = 0.038 and n = 81... therefore,

s2
X̄

= 0.038
81 so, the 95% confidence interval for the ROE of SAP

firms is [
X̄ − 2× sX̄ ; X̄ + 2× sX̄

]
=

[
0.1263− 2×

√
0.038

81
; 0.1263 + 2×

√
0.038

81

]
= [0.083; 0.170]

I Is 0.15 a plausible value? What does that mean?
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Back to the Oracle vs. SAP example

Back to our simulation...
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0.170.083
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Estimating Proportions...

We used the proportion of defects in our sample to estimate p, the

true, long-run, proportion of defects.

Could this estimate be wrong?!!

Let p̂ denote the sample proportion. (note: the sample proportion

is just the sample mean of a binary r.v.)

The standard error associated with the sample proportion

as an estimate of the true proportion is:

sp̂ =

√
p̂ (1− p̂)

n
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Estimating Proportions...

We estimate the true p by the observed sample proportion

of 1’s, p̂.

The (approximate) 95% confidence interval for the true pro-

portion is:

p̂ ± 2 sp̂.
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Defects:

In our defect example we had p̂ = .18 and n = 100.

This gives

sp̂ =

√
(.18) (.82)

100
= .04.

The confidence interval is .18± .08 = (0.1, 0.26)
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Polls: yet another example...

Suppose we take a relatively small random sample from a large

population and ask each respondent a question, with yes

corresponding to Yi = 1 and no to Yi = 0. Let p be the true

population proportion of yes’s.

Suppose n = 1000, and p = .5 so p̂ ≈ 0.5 (Remember that

Var(Yi ) = p(1− p) is largest when p = 0.5)

Then,

sp̂ ≈
√

(.5) (.5)

1000
= .0158.

The standard error is .0158 so that half of a 95% CI (the “±”) is

.0316, or about ± 3%.
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The Bottom Line...

I Estimates are based on random samples and therefore random

(uncertain) themselves

I We need to account for this uncertainty!

I The “standard error” measures the uncertainty of an estimate

I For most parameters a good “95% Confidence Interval” is

estimate± 2× s.e.

I This provides us with a plausible range for the quantity we are

trying to estimate.

30



The Bottom Line...

I When estimating a mean the 95% C.I. is

X̄ ± 2× sX̄

I When estimating a proportion the 95% C.I. is

p̂ ± 2× sp̂
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The Importance of Considering and Reporting

Uncertainty

In 1997 the Red River flooded Grand Forks, ND overtopping its

levees with a 54-feet crest. 75% of the homes in the city were

damaged or destroyed!

It was predicted that the rain and the spring melt would lead to a

49-feet crest of the river. The levees were 51-feet high.

The Water Services of North Dakota had explicitly avoided

communicating the uncertainty in their forecasts as they were

afraid the public would loose confidence in their abilities to predict

such events.
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The Importance of Considering and Reporting

Uncertainty

It turns out the prediction interval for the flood was 49ft ± 9ft

leading to a 35% probability of the levees being topped!!

Should we take the point prediction (49ft) or the interval as an

input for a decision problem?

In general, the distribution of possible outcomes (not a single

prediction/estimate) is relevant for decisionmaking.
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The Importance of Considering and Reporting

Uncertainty

The answer seems obvious in this example (and it is!)... however,

people tend to underplay uncertainty in many situations.

“Why do people not give intervals? Because they are

embarrassed!”

Jan Hatzius, Goldman Sachs chief economist, talking about

economic forecasts...

Don’t make this mistake! Intervals are your friend and will lead to

better decisions.
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