Section 1.3: More Probability and Decisions: Continuous Random Variables

Jared S. Murray The University of Texas at Austin McCombs School of Business OpenIntro Statistics, Chapter 3.1

1

Continuous Random Variables

- Suppose we are trying to predict tomorrow's return on the S&P500 (Or on a real Ford/Tesla portfolio)...
- Question: What is the random variable of interest? What are its possible outcomes? Could you list them?
- Question: How can we describe our uncertainty about tomorrow's outcome?

Continuous Random Variables

- Recall: a random variable is a number about which we're uncertain, but can describe the possible outcomes.
- Listing all possible values isn't possible for continuous random variables, we have to use intervals.
- The probability the r.v. falls in an interval is given by the area under the probability density function. For a continuous r.v., the probability assigned to any single value is zero!

- The Normal distribution is the most used probability distribution to describe a continuous random variable. Its probability density function (pdf) is symmetric and bell-shaped.
- The probability the number ends up in an interval is given by the area under the pdf.

- The standard Normal distribution has mean 0 and has variance 1.
- Notation: If $Z \sim N(0, 1)$ (Z is the random variable)

$$Pr(-1 < Z < 1) = 0.68$$

$$Pr(-1.96 < Z < 1.96) = 0.95$$

Note:

For simplicity we will often use $P(-2 < Z < 2) \approx 0.95$

Questions:

• What is Pr(Z < 2)? How about $Pr(Z \le 2)$?

► What is *Pr*(*Z* < 0)?</p>

- The standard normal is not that useful by itself. When we say "the normal distribution", we really mean a family of distributions.
- We obtain pdfs in the normal family by shifting the bell curve around and spreading it out (or tightening it up).

- We write X ~ N(μ, σ²). "X has a Normal distribution with mean μ and variance σ².
- The parameter μ determines where the curve is. The center of the curve is μ.
- The parameter σ determines how spread out the curve is. The area under the curve in the interval (μ − 2σ, μ + 2σ) is 95%. Pr(μ − 2σ < X < μ + 2σ) ≈ 0.95</p>

Recall: Mean and Variance of a Random Variable

- For the normal family of distributions we can see that the parameter μ determines "where" the distribution is *located* or *centered*.
- The expected value μ is usually our best guess for a *prediction*.
- The parameter σ (the standard deviation) indicates how spread out the distribution is. This gives us and indication about how uncertain or how risky our prediction is.

- ► Example: Below are the pdfs of X₁ ~ N(0,1), X₂ ~ N(3,1), and X₃ ~ N(0,16).
- Which pdf goes with which X?

The Normal Distribution – Example

- Assume the annual returns on the SP500 are normally distributed with mean 6% and standard deviation 15%.
 SP500 ~ N(6, 225). (Notice: 15² = 225).
- Two questions: (i) What is the chance of losing money in a given year? (ii) What is the value such that there's only a 2% chance of losing that or more?
- Lloyd Blankfein: "I spend 98% of my time thinking about .02 probability events!"
- (i) Pr(SP500 < 0) and (ii) Pr(SP500 <?) = 0.02

The Normal Distribution – Example

• (i) Pr(SP500 < 0) = 0.35 and (ii) Pr(SP500 < -25) = 0.02

In R, calculations with the normal distribution are easy! (Remember to use SD, not Var) To compute Pr(SP500 < 0) = ?:

pnorm(0, mean = 6, sd = 15)
[1] 0.3445783

To solve Pr(SP500 < ?) = 0.02:

qnorm(0.02, mean = 6, sd = 15)

[1] -24.80623

1. Note: In

$$X \sim N(\mu, \sigma^2)$$

 μ is the mean and σ^2 is the variance.

2. Standardization: if $X \sim N(\mu, \sigma^2)$ then

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

- 3. Summary:
 - $X \sim N(\mu, \sigma^2)$:
 - $\mu :$ where the curve is
 - σ : how spread out the curve is 95% chance $X \in \mu \pm 2\sigma$.

The Normal Distribution – Another Example

Prior to the 1987 crash, monthly S&P500 returns (r) followed (approximately) a normal with mean 0.012 and standard deviation equal to 0.043. How extreme was the crash of -0.2176? The standardization helps us interpret these numbers...

 $r \sim N(0.012, 0.043^2)$

$$z = \frac{r - 0.012}{0.043} \sim N(0, 1)$$

For the crash,

$$z = \frac{-0.2176 - 0.012}{0.043} = -5.27$$

How extreme is this zvalue? 5 standard deviations away!!

Portfolios, once again...

- As before, let's assume that the annual returns on the SP500 are normally distributed with mean 6% and standard deviation of 15%, i.e., SP500 ~ N(6, 15²)
- Let's also assume that annual returns on bonds are normally distributed with mean 2% and standard deviation 5%, i.e., Bonds ~ N(2,5²)
- What is the best investment?
- What else do I need to know if I want to consider a portfolio of SP500 and bonds?

Portfolios once again...

- Additionally, let's assume the correlation between the returns on SP500 and the returns on bonds is -0.2.
- How does this information impact our evaluation of the best available investment?

Recall that for two random variables X and Y:

$$\blacktriangleright E(aX+bY)=aE(X)+bE(Y)$$

- $\lor Var(aX + bY) = a^2 Var(X) + b^2 Var(Y) + 2ab \times Cov(X, Y)$
- One more very useful property... sum of normal random variables is a new normal random variable!

Portfolios once again...

- What is the behavior of the returns of a portfolio with 70% in the SP500 and 30% in Bonds?
- ► E(0.7SP500 + 0.3Bonds) = 0.7E(SP500) + 0.3E(Bonds) = 0.7 × 6 + 0.3 × 2 = 4.8
- ► Var(0.7SP500 + 0.3Bonds) =(0.7)² $Var(SP500) + (0.3)^2Var(Bonds) + 2(0.7)(0.3) \times$ $Corr(SP500, Bonds) \times sd(SP500) \times sd(Bonds) =$ (0.7)²(15²) + (0.3)²(5²) + 2(0.7)(0.3) × -0.2 × 15 × 5 = 106.2
- ▶ Portfolio ~ N(4.8, 10.3²)
- What do you think about this portfolio? Is there a better set of weights?

Simulating Normal Random Variables

- Imagine you invest \$1 in the SP500 today and want to know how much money you are going to have in 20 years. We can assume, once again, that the returns on the SP500 on a given year follow N(6, 15²)
- Let's also assume returns are independent year after year...
- Are my total returns just the sum of returns over 20 years? Not quite... compounding gets in the way.

Let's simulate potential "futures"

Simulating one normal r.v.

At the end of the first year I have $(1 \times (1 + pct return/100))$.

val = 1 + rnorm(1, 6, 15)/100
print(val)
[1] 0.9660319

rnorm(n, mu, sigma) draws *n* samples from a normal distribution with mean μ and standard deviation σ .

We reinvest our earnings in year 2, and every year after that:

```
for(year in 2:20) {
  val = val*(1 + rnorm(1, 6, 15)/100)
}
print(val)
## [1] 4.631522
```

Simulating a few more "futures"

We did pretty well - our \$1 has grown to \$4.63, but is that typical? Let's do a few more simulations:

year

More efficient simulations

Let's simulate 10,000 futures under this model. Recall the value of my investment at time T is

$$\prod_{t=1}^{T} (1 + r_t/100)$$

where r_t is the percent return in year t

```
library(mosaic)
num.sim = 10000
num.years = 20
values = do(num.sim) * {
    prod(1 + rnorm(num.years, 6, 15)/100)
}
```

Simulation results

Now we can answer all kinds of questions:

What is the mean value of our investment after 20 years?

```
vals = values$result
```

mean(vals)

[1] 3.187742

What's the probability we beat a fixed-income investment (say at 2%)?

sum(vals > 1.02²⁰)/num.sim

[1] 0.8083

Simulation results

What's the median value?

median(vals)

[1] 2.627745

(Recall: The median of a probability distribution (say m) is the point such that $Pr(X \le m) = 0.5$ and Pr(X > m) = 0.5 when X has the given distribution).

Remember the mean of our simulated values was 3.19...

Median and skewness

- For symmetric distributions, the expected value (mean) and the median are the same... look at all of our normal distribution examples.
- But sometimes, distributions are skewed, i.e., not symmetric. In those cases the median becomes another helpful summary!

Probability density function of our wealth at T = 20

We see the estimated distribution is skewed to the right if we use the simulations to estimate the pdf:

Value of \$1 in 20 years

\$\$