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Getting Started

I Syllabus

I General Expectations

1. Be on time and prepared

2. Participate in discussions

3. Complete homework assignments

4. Get familiar with R and RStudio
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Course Overview

Section 1: Probability & statistics review, introduction to simulation,

and decision making under uncertainty

Section 2: Simple Linear Regression

Section 3: Multiple Linear Regression

Section 4: Forecasting and Time Series

Section 5+: Additional topics in modeling/simulation
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Statistical computing

I We will use R for statistical

analysis throughout the course

I This is industrial-strength,

state-of-the-art, and free software

for statistical computing

I Industrial-strength means

industrial-strength: Google, J.P.

Morgan, Whole Foods, Facebook,

and even Microsoft use R

I We will access R through RStudio,

a graphical interface for R
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Getting Started with R and RStudio

Your first homework assignment (nothing to turn in!)

1. Visit the course website and complete the first three tutorials

listed under “R/RStudio” resources

2. Run the R code accompanying these lecture notes. Try

changing things and see what happens!

5



Let’s start with a question...

My entire portfolio is in U.S. equities. How would you describe the

possible outcomes for my returns in 2017?
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Another question... (Targeted marketing)

Suppose you are deciding whether or not to target a customer with

a promotion (or an ad)...

It will cost you $.80 (eighty cents) to run the promotion and a

customer spends $40 if they respond to the promotion.

Should you do it? What if it cost $80? Or $35?
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Introduction

Probability and statistics let us talk meaningfully about uncertain

events.

I How likely is President Trump to finish a four year term?

I How much will Amazon sell next quarter?

I What will the return of my retirement portfolio be next year?

I How often will users click on a particular Facebook ad?

All of these involve inferring or predicting unknown quantities!
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Random Variables

I Random Variables are numbers that we are NOT sure about,

but have sets of possible outcomes we can describe.

I Example: Suppose we are about to toss a coin twice.

Let X denote the number of heads we observe.

Here X is the random variable that stands in for the number

about which we are unsure.
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Probability

Probability is a language designed to help us talk and think about

random variables. The key idea is that to each event (one or more

possible outcomes) we will assign a number between 0 and 1 which

reflects how likely that event is to occur. For such an immensely

useful language, it has only a few basic rules.

1. If an event A is certain to occur, it has probability 1, denoted

P(A) = 1.

2. P(AC ) = 1− P(A). (AC is “not-A”)

3. If two events A and B are mutually exclusive (both cannot

occur simultaneously), then P(A or B) = P(A) + P(B).

4. P(A and B) = P(A)P(B|A) = P(B)P(A|B)
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Probability Distribution

I We describe the behavior of random variables with a

probability distribution, which assigns probabilities to events.

I Example: If X is the random variable denoting the number of

heads in two independent coin tosses, we can describe its

behavior through the following probability distribution:

X =


0 with prob. 0.25

1 with prob. 0.5

2 with prob. 0.25

I X is called a Discrete Random Variable as we are able to list

all the possible outcomes

I Question: What is Pr(X = 0)? How about Pr(X ≥ 1)?
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Probability Distributions via Simulation

I This is a simple example, so we can compute the relevant

probability distribution

I What if we couldn’t do the math? Could we still understand

the distribution of X?

I Yes - by simulaiton!
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Quick intro to R

We can do more efficient simulations in R.

I’ll show you some code today, but don’t worry if it’s hard to follow

right now - we will get lots of practice.

R can be used as a calculator:

1+3

## [1] 4

sqrt(5)

## [1] 2.236068
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Quick intro to R

We can save values for later, in specially named containers called

variables

x = 5

print(x)

## [1] 5

x+2

## [1] 7
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Quick intro to R

Variables can be numbers, vectors, matrices, text, and other

special data types. We will only worry about a few of these.

y = "Hello"

print(y)

## [1] "Hello"

z = c(1, 3, 4, 7)

print(z)

## [1] 1 3 4 7

s = rep(1, 3)

print(s)

## [1] 1 1 1 15



Probability Distributions via Simulation in R

R has extensive capabilities to generate random numbers. The

sample function simulates discrete random variables, by default

giving equal probability to each outcome:

sample(c(1, 4, 5), size=4, replace=TRUE)

## [1] 1 4 4 5
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Probability Distributions via Simulation

Let’s simulate flipping a fair coin twice:

sample(x = c(0,1), size = 2, replace = TRUE)

## [1] 0 1

And a few more times:

sample(x = c(0,1), size = 2, replace = TRUE)

## [1] 1 1

sample(x = c(0,1), size = 2, replace = TRUE)

## [1] 1 0

sample(x = c(0,1), size = 2, replace = TRUE)

## [1] 0 0
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Probability Distributions via Simulation

To approximate the probability distribution of X , we can repeat

this process MANY times and count how often we see each

outcome.

A “for loop” is our friend here (for now):

num.sim = 10000

num.heads.sample = rep(x = NA, times = num.sim)

for (i in 1:num.sim) {
coinflips.result = sample(x = c(0, 1),

size = 2, replace = TRUE)

num.heads.sample[i] = sum(coinflips.result)

}
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Aside: For Loops and Efficient Computing in R

I For speed and code readability reasons, R gurus usually

recommend against for loops (including me!)

I But they are often more accessible to new users than the

efficient alternatives.

I You can find more efficient implementations of some in-class

simulations posted online; time permitting we will revisit them

at the end of the course.
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Aside: Packages in R

One powerful reason to use R is the number of user contributed

packages that extend its functionality. (Rohit and I have both

contributed R packages for general use!)

We’ll use the mosaic package in R to simplify some common

tasks, like simple repeated simulation:

library(mosaic)

num.heads.sample = do(num.sim) * {
coinflips.result = sample(x = c(0, 1),

size = 2, replace = TRUE)

sum(coinflips.result)

}
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Probability Distributions via Simulation

Results (first 10 samples):

head(num.heads.sample, 10)

## result

## 1 1

## 2 1

## 3 1

## 4 2

## 5 1

## 6 1

## 7 1

## 8 1

## 9 0

## 10 0 21



Probability Distributions via Simulation

Results (summary):

table(num.heads.sample)

## num.heads.sample

## 0 1 2

## 2513 5015 2472

table(num.heads.sample)/num.sim

## num.heads.sample

## 0 1 2

## 0.2513 0.5015 0.2472
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What have we done here? We:

I Set up a model of the world (The coin is fair, so

P(Heads) = 0.5, and the tosses are independent)

I Understood the implications of that model through:

1. Mathematics (probability calculations)

2. Simulation

When we add the ability to incorporate learning about uncertain

model parameters (statistics!) we have a powerful new toolbox for

making inference, predictions, and decisions.
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https://projects.fivethirtyeight.com/2016-election-forecast/
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Pete Rose’s Hitting Streak

Pete Rose of the Cincinnati Reds set a National League record of

hitting safely in 44 consecutive games...

I Rose was a .300 hitter.

I Assume he comes to bat 4 times each game.

I Each at bat is assumed to be independent, i.e., the current at

bat doesn’t affect the outcome of the next.

What probability might reasonably be associated with a hitting

streak of that length?
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Pete Rose’s Hitting Streak

Let Ai denote the event that “Rose hits safely in the i th game”

Then P(Rose Hits Safely in 44 consecutive games) =

P(A1 and A2 . . . and A44) = P(A1)P(A2)...P(A44)

We now need to find P(Ai )... It is easier to think of the

complement of Ai , i.e., P(Ai ) = 1− P(not Ai )

P(Ai ) = 1− P(Rose makes 4 outs)

= 1− (0.7× 0.7× 0.7× 0.7)

= 1− (0.7)4 = 0.76

So, for the winning streak we have (0.76)44 = 0.0000057!!!

(Why?) (also, Joe DiMaggio’s record is 56!) 26



New England Patriots and Coin Tosses

For the past 25 games the Patriots won 19 coin tosses!

What is the probability of that happening?

Let T be a random variable taking the value 1 when the Patriots

win the toss or 0 otherwise.

It’s reasonable to assume Pr(T = 1) = 0.5, right??

Now what? It turns out that there are 177,100 different sequences

of 25 games where the Patriots win 19... it turns out each

potential sequence has probability 0.525 (why?)

Therefore the probability for the Patriots to win 19 out 25 tosses is

177, 100× 0.525 = 0.005
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Trump’s Victory: A Surprise?

Simplifying things: Trump had to win 5 states: Florida,

Pennsylvania, Michigan, North Carolina, and Wisconsin.

Based on this info, what was the probability of a Trump victory?

(538 said 0.29 - why?)
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Conditional, Joint and Marginal Distributions

In general we want to use probability to address problems involving

more than one variable at a time. We need to think carefully about

dependence between the random variables!

Think back to our first question on the returns of my portfolio... if

we know that the economy will be growing next year, does that

change the assessment about the behavior of my returns?

We need to be able to describe what we think will happen to one

variable relative to another...
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Conditional, Joint and Marginal Distributions

Here’s an example: We want to answer questions like: How are my

sales impacted by the overall economy?

Let E denote the performance of the economy next quarter... for

simplicity, say E = 1 if the economy is expanding and E = 0 if the

economy is contracting (what kind of random variable is this?)

Let’s assume Pr(E = 1) = 0.7
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Conditional, Joint and Marginal Distributions

Let S denote my sales next quarter... and let’s suppose the

following probability statements:

S Pr(S |E = 1) S Pr(S |E = 0)

1 0.05 1 0.20

2 0.20 2 0.30

3 0.50 3 0.30

4 0.25 4 0.20

These are called Conditional Distributions
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Conditional, Joint and Marginal Distributions

s Pr(S = s|E = 1) S Pr(S = s|E = 0)

1 0.05 1 0.20

2 0.20 2 0.30

3 0.50 3 0.30

4 0.25 4 0.20

I In blue is the conditional distribution of S given E = 1

I In red is the conditional distribution of S given E = 0

I We read: the probability of Sales of 4 (S = 4) given(or

conditional on) the economy is growing (E = 1) is 0.25
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Conditional, Joint and Marginal Distributions

The conditional distributions tell us about about what can happen

to S for a given value of E ... but what about S and E jointly?

Pr(S = 4 and E = 1) = Pr(E = 1)× Pr(S = 4|E = 1)

= 0.70× 0.25 = 0.175

In English, 70% of the time the economy is growing. 1/4 of the

times that the economy is growing sales equals 4... 25% of 70% is

17.5%
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Conditional, Joint and Marginal Distributions
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Conditional, Joint and Marginal Distributions

We call the probabilities of E and S together the joint distribution

of E and S .

In general the notation is...

I Pr(Y = y ,X = x) is the joint probability that the random

variable Y equals y AND the random variable X equals x .

I Pr(Y = y |X = x) is the conditional probability that the

random variable Y takes the value y GIVEN that X equals x .

I Pr(Y = y) and Pr(X = x) are the marginal probabilities of

Y = y and X = x – that is, the probability that X equals x

absent any knowledge of Y .
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Conditional, Joint and Marginal Distributions

Why we call marginals marginals... the table represents the joint

distribution and at the margins, we get the marginals.
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Conditional, Joint and Marginal Distributions

Example... Given E = 1 what is the probability of S = 4?
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Conditional, Joint and Marginal Distributions

Example... Given S = 4 what is the probability of E = 1?
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Independence

Two random variable X and Y are independent if

Pr(Y = y |X = x) = Pr(Y = y)

for all possible x and y .

In other words,

knowing X tells you nothing about Y !

e.g., tossing a coin 2 times... what is the probability of getting H

in the second toss given we saw a T in the first one?

Dependence (or “association”) makes things more complicated...
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The Berkeley gender bias case (Simpson’s paradox)

Let A =“admitted to Berkeley”. In 1973 it was noted that

P(A | male) = 0.44 while P(A | female) = 0.35. Meanwhile,

individual departments showed no signs of discrimination. Suppose

for now Berkeley has only chemistry and biology departments

Chemistry Psychology

P(A | female) 0.6 0.3

P(A | male) 0.5 0.25

What is going on?
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The Law of Total Probability

We need one more useful probability tool, the law of total

probability:

P(A) = P(A and B) + P(A and Bc)

where Bc is the complement of B (the event that “B doesn’t

happen”)
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The Berkeley gender bias case

For Females:

P(A) = P(A | chem)P(chem) + P(A | psych)P(psych)

0.35 = 0.6P(chem) + 0.3(1− P(chem))

(hence) P(chem) = 0.167

For Males:

P(A) = P(A | chem)P(chem) + P(A | psych)P(psych)

0.44 = 0.5P(chem) + 0.25(1− P(chem))

(hence) P(chem) = 0.76

The probability a student applies to chem depends on their gender.
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The Berkeley gender bias case

The explanation for the apparent overall bias was that women have

a higher probability of applying to Psychology than to Chemistry

(assuming for simplicity that these are the only two options) and

overall Psychology has a lower admissions rate!

This is a cautionary tale! Before we can act on a apparent

association between two variables (for example, sue Berkeley) we

need to account for potential lurking variables that are the real

cause of the relationship. We will talk a lot more about this... but

keep in mind, association is NOT causation!

(Question: Should we conclude there was no gender bias in favor

of men in admissions to Berkeley?)
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Flipping the script: Inverting conditional probability

Often we have one conditional probability (say P(A | B)) but we

want the other one (i.e. P(B | A)). Say we’re testing for a disease.

Let D = 1 indicate you have the disease

Let T = 1 indicate that you test positive
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If you take the test and the result is positive, you are really

interested in the question: Given that you tested positive, what is

the probability you have the disease? 44



Disease Testing Example
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Pr(D = 1|T = 1) =
0.019

(0.019 + 0.0098)
= 0.66
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Bayes theorem

The computation of Pr(X = x |Y = y) from Pr(X = x) and

Pr(Y = y |X = x) is called Bayes theorem...

Pr(X = x |Y = y) =
Pr(Y = y and X = x)

Pr(Y = y)

=
Pr(Y = y and X = x)∑n
i=1 Pr(Y = y ,X = xi )

=
Pr(X = x)Pr(Y = y |X = x)∑n

i=1 Pr(X = xi )Pr(Y = y |X = xi )

In the disease testing example:

Pr(D = 1|T = 1) = p(T=1|D=1)p(D=1)
p(T=1|D=1)p(D=1)+p(T=1|D=0)p(D=0)

Pr(D = 1|T = 1) = 0.019
(0.019+0.0098) = 0.66 46



Bayes theorem as population frequencies (aside)

I Try to think about this intuitively... imagine you are about to

test 100,000 people.

I we assume that about 2,000 of those have the disease.

I we also expect 1% of the disease-free people to test positive,

ie, 980, and 95% of the sick people to test positive, ie 1,900.

So, we expect a total of 2,880 positive tests.

I Choose one of the 2,880 people at random... what is the

probability that he/she has the disease?

Pr(D = 1|T = 1) = 1, 900/2, 880 = 0.66

We get the same answer!
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Probability and Decisions

I So you’ve tested positive for a disease. Now what?

I Let’s say there’s a treatment available. Do you take it?

I What additional information do you need?
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