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Model Building Process

When building a model, remember: simplicity is your friend.

Every additional parameter represents a cost! Smaller models are

easier to interpret and have fewer unknown parameters to be

estimated (i.e., usually smaller standard errors).

The first step of every model building exercise is the selection of

the the universe of X’s to be potentially used. This task is entirely

solved through your experience and context specific knowledge...

I Think carefully about the problem

I Consult subject matter research and experts

I Avoid including “too many” variables

I Consider transformations of the original variables – always

make sure your assumptions appear to be valid! 2



Selecting a regression model

In a linear regression context, picking a model amounts to deciding

which terms (X’s) to include.

This is often called “variable selection”. I don’t like that

terminology (for example, age is one variable, but age and age2 are

two terms or X’s we might include) but I’m in the minority.

With a universe of possible terms in hand, the goal now is to select

the model. Why not include all the terms?
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Selecting a regression model

Big models tend to over-fit and find features that are specific to

the data in hand... i.e., not generalizable relationships.

The result is bad prediction and bad science!

In addition, bigger models have more parameters and potentially

more uncertainty about everything we are trying to learn...
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Overfitting

Remember the effect of adding more polynomial terms in the

telemarketing example?
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The curves fit the sample better and better, but eventually

generalize worse. 5



Adding Variables Can Increase Uncertainty

Compare the standard error of b1 when fitting

nbeers = β0 + β1weight + β2height + ε

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -11.18709 10.76821 -1.039 0.304167

## weight 0.08530 0.02381 3.582 0.000806 ***

## height 0.07751 0.19598 0.396 0.694254

Versus
nbeers = β0 + β1weight + ε

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -7.02070 2.21329 -3.172 0.00264 **

## weight 0.09289 0.01399 6.642 2.6e-08 ***

Nearly 2x as large! And β1 is (a little) harder to interpret.
6



What Makes a “Good” Model?

It depends a little on context, but a good model should:

I Only make assumptions that are reasonable (and not

contradicted by the data)

I Contain enough variables to support the analysis

I All potential “lurking variables” when making a causal claim

I Important covariates when making predictions (for better

predictions and smaller prediction intervals)

I Avoid including too many variables and/or complicated

transformations.

We have graphical checks for assumptions, and subject knowledge

about important and lurking variables. How can we assess

predictive ability?
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Out-of-Sample Prediction

How do we evaluate a forecasting model? Make predictions!

Basic Idea: We want to use the model to forecast outcomes for

observations we have not seen before.

I Use the data to create a prediction problem where we know

the “right” answer

I See how our candidate models perform.

We’ll use most of the data for training the model,

and the left over part for validating the model.
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Out-of-Sample Prediction

Let’s revisit the airline data. We fit without the very last

observation, and then generate a forecast for the known value

under 3 different models (the x’s; the true value is the black dot)
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Out-of-Sample Prediction

With one data point, a model might have a good prediction just by

chance! Remember, the next data point includes a random error.

Let’s repeat, but forecast a whole year:
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Which model do you prefer? Do you trust your choice now? 10



Out-of-Sample Prediction

In a cross-validation scheme, you fit a bunch of models to most of

the data (training sample) and choose the model

that performed the best on the rest (left-out sample).

I Fit the model on the training data

I Use the model to predict Ŷj values for all of the NLO left-out

data points

I Calculate the Mean Square Error for these predictions

MSE =
1

NLO

NLO∑
j=1

(Yj − Ŷj)
2

(For the airline data, we looked at NLO = 1 and NLO = 12) 11



Example

To illustrate the potential problems of “over-fitting” the data, let’s

look again at the Telemarketing example... let’s look at multiple

polynomial terms...
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Example

Let’s evaluate the fit of each model by their R2, computed with

the traning data - higher is (supposed to be) better.
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Example

How about the MSE on the left-out data? (Lower is better).
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Leave One Out Cross Validation

In the last example, we randomly split the data into training and

left-out data. Alternatively, we could do CV with each observation

as the left-out data (NLO = 1) and average the prediction errors

(Image from Introduction to Statistical Learning with R)
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Leave One Out Cross Validation

This is leave one out cross validation:

For each observation i ,

1. Fit the model using data points 1, 2, 3, . . . , i − 1, i + 1 dots, n

2. Predict yi with ŷ
(i)
i (The (i) means that point i isn’t used to

generate the predicted value)

3. Save the out of sample prediction error pei = yi − ŷ
(i)
i

Estimate the forecast error by

1

n

n∑
i=1

pe2i =
1

n

n∑
i=1

(
yi − ŷ

(i)
i

)2
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Leave One Out Cross Validation

For time series, things are a little more complicated. But we can

use the first j − 1 points (blue) to fit a model and compute the

prediction error for yj (red), ignoring the rest of the “future”

yj+1, . . . , yT (gray).

Then we average the prediction errors just like before. This is

implemented in the tsCV function in the forecast package.
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AIC for Model Selection
Another way to evaluate a model is to use Information Criteria

metrics which attempt to balance predictive fit and model

complexity (number of covariates p). The Akakie Information

Criterion (AIC)is one:

AIC ≈ n log(s2) + 2p

The Bayesian Information Criterion (BIC) is another:

AIC ≈ n log(s2) + p log(n)

For eiether criterion lower is better.

AIC is about the same as leave-one-out in large samples (but faster

to compute); BIC selects more parsimonious models. 18



Two Criteria I Don’t Recommend

I don’t recommend using R2 (remember, it always goes up!) or

adjusted R2:

R2
adj = 1 − s2

var(y)
= 1 − SSE/(n − p − 1)

SST/(n − 1)

as it tends to overfit.

I also don’t generally recommend blindly dropping variables when

their p−value is below 0.05 (or 0.1 or some other arbitrary

threshold)

Sadly, your book advocates both.
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Computing Model Selection Criteria

For regression models, you can compute the cross validation error,

AIC, BIC, and adjusted R2 using the forecast package:

CV(beerfit_hw)

## CV AIC AICc BIC AdjR2

## 8.5337525 107.3087751 108.1976640 114.9568671 0.4585626

CV(beerfit_w)

## CV AIC AICc BIC AdjR2

## 8.008227 105.474914 105.996653 111.210983 0.468078
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Searching For a “Good” Model

What if we have many possible models to compare? With p

possible X’s, there are 2p possible models.

For p = 20 that’s over a million possibilities!

If we can’t look at each possible model, we have to do some

searching...
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Stepwise Regression

One approach to build a regression model (semi-)automatically,

step-by-step, is “stepwise regression” There are 3 options:

I Forward: adds one variable at the time until no remaining

variable makes a significant contribution (or meet a certain

criteria... could be out of sample prediction)

I Backwards: starts will all possible variables and removes one

at the time until further deletions would do more harm them

good

I Stepwise: just like the forward procedure but allows for

deletions at each step
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Auto MPG Example

Initial model:

MPG = β0 + β1weight + β2horsepower + β3displacement+

β4acceleration + β5cylinders + β6year + β7year
2 + β8origin1 +

β9origin2 + ε

Backward elemination:

I Step1: delete origin2

I Step 2: delete acceleration

I Step 3: delete cylinders

Selected model:

MPG = β0 + β1weight + β2horsepower + β3displacement +

β6year + β7year
2 + β8origin1 + ε

23



Auto MPG Example

Residual plot for:

MPG = β0 + β1weight + β2horsepower + β3displacement +

β6year + β7year
2 + β8origin1 + ε
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Auto MPG Example

New initial model, after diagnostics:

log(MPG ) = β0 + β1 + log(weight) + β2 log(horsepower) +

β3 log(displacement) + β4 log(acceleration) + β5cylinders +

β6year + β7year
2 + β8origin1 + β9origin2 + ε

Backward elemination:

I Step1: delete log(displacement)

I Step 2: delete origin2

Selected model:

log(MPG ) = β0 + β1 + log(weight) + β2 log(horsepower) +

β4 log(acceleration)+β5cylinders +β6year +β7year
2 +β8origin1+ε

25



Auto MPG Example

Residual plot for:

log(MPG ) = β0 + β1 + log(weight) + β2 log(horsepower) +

β4 log(acceleration)+β5cylinders +β6year +β7year
2 +β8origin1+ε
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How about this one?

Diagnose the residuals! 26



Auto MPG Example

In this example, forward/backward/stepwise give the same answer

using AIC. This isn’t always true! There is no button to push to

get the “right” answer.

Also note that this process is hardly automatic! Fit, diagnose,

transform, refit, diagnose... Model building is iterative.

Note also that after this process, the p-values, t-statistics, and

standard errors are no longer valid. To get valid inference, we

need to select a model using one part of our data (e.g. half) and

compute SE’s, etc on another “validation” dataset (or the

remaining half of the original dataset).
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One informal but very useful idea to put it all together...

I like to build models from the bottom, up...

I Set aside a set of points to be your validation set (if dataset

large enough)
I Working on the training data, add one variable at the time

deciding which one to add based on some criteria:

1. CV, AIC, BIC, etc.

2. Adjusted R2 is OK as a heuristic

3. p-value of the new variable – does it seem to add anything

beyond what’s already in the model?

I At every step, carefully analyze the output and

check the residuals!

I Stop when no additional variable produces a “significant”

improvement

I Always make sure you understand what the model is doing in

the specific context of your problem
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