Section 4.1: Time Series I

Jared S. Murray
The University of Texas at Austin
McCombs School of Business

Time Series Data and Dependence

Time-series data are simply a collection of observations gathered over time. For example, suppose $y_{1} \ldots y_{T}$ are

- Annual GDP.
- Quarterly production levels
- Weekly sales.
- Daily temperature.
- 5 minute stock returns.

In each case, we might expect what happens at time t to be correlated with what happens at time $t-1$.

Time Series Data and Dependence

Suppose we measure temperatures daily for several years.

Which would work better as an estimate for today's temp:

- The average of the temperatures from the previous year?
- The temperature on the previous day?

Example: Length of a bolt...

Suppose you have to check the performance of a machine making bolts... in order to do so you want to predict the length of the next bolt produced...

What is your best guess for the next part?

Example: Beer Production

Now, say you want to predict the monthly U.S. beer production (in millions of barrels).

What about now, what is your best guess for the production in the next month?

Examples: Temperatures

Now you need to predict the temperature on March 1 at O'Hare using data from Jan-Feb.

Is this one harder? Our goal in this section is to use regression models to help answer these questions...

Fitting a Trend

Here's a time series plot of monthly sales of a company...

What would be a reasonable prediction for Sales 5 months from now?

Fitting a Trend

The sales numbers are "trending" upwards... What model could capture this trend?

$$
S_{t}=\beta_{0}+\beta_{1} t+\epsilon_{t} \quad \epsilon_{t} \sim N\left(0, \sigma^{2}\right)
$$

This is a regression of Sales (y variable) on "time" (x variable). This allows for shifts in the mean of Sales as a function of time.

Fitting a Trend

The data for this regression looks like:

months (t)	Sales
1	69.95
2	59.64
3	61.96
4	61.55
5	45.10
6	77.31
7	49.33
8	65.49
\ldots	\ldots
100	140.27

Fitting a Trend

$$
S_{t}=\beta_{0}+\beta_{1} t+\epsilon_{t} \quad \epsilon_{t} \sim N\left(0, \sigma^{2}\right)
$$

```
library(forecast)
sales_fit = tslm(sales_series ~}\mp@subsup{}{}{~}\mathrm{ trend)
print(sales_fit)
##
## Call:
## tslm(formula = sales_series ~ trend)
##
## Coefficients:
## (Intercept) trend
## 51.4419 0.9978
```

$\hat{S}_{t}=51.44+0.998 t$

Fitting a Trend

Plug-in prediction...

Fitting a Trend

```
sales_pred = forecast(sales_fit, h=10)
plot(sales_pred)
```

Forecasts from Linear regression model

print(sales_pred)

\#\#	Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95	
\#\#	101	152.2150	132.8183	171.6117	122.3819	182.0481	
\#\#	102		153.2128	133.8047	172.6209	123.3621	183.0634

Residuals

How should our residuals look? If our model is correct, the trend should have captured the time series structure is sales and what is left, should not be associated with time... i.e., it should be iid normal.

Great!

Time Series Regression... Hotel Occupancy Case

In a recent legal case, a Chicago downtown hotel claimed that it had suffered a loss of business due to what was considered an illegal action by a group of hotels that decided to leave the plaintiff out of a hotel directory.

In order to estimate the loss business, the hotel had to predict what its level of business (in terms of occupancy rate) would have been in the absence of the alleged illegal action.

In order to do this, experts testifying on behalf of the hotel use data collected before the period in question and fit a relationship between the hotel's occupancy rate and overall occupancy rate in the city of Chicago. This relationship would then be used to predict occupancy rate during the period in question.

Example: Hotel Occupancy Case

$$
\text { Hotel }_{t}=\beta_{0}+\beta_{1} \text { Chicago }+\epsilon_{t}
$$

```
##
## Call:
## lm(formula = Hotel ~ Chicago, data = hotel)
##
## Coefficients:
## (Intercept) Chicago
## 16.1357 0.7161
```

- In the month after the omission from the directory the Chicago occupancy rate was 66%. The plaintiff claims that its occupancy rate should have been $16+0.71^{*} 66=62 \%$.
- It was actually 55% !! The difference added up to a big loss! 45

Example: Hotel Occupancy Case

A statistician was hired by the directory to access the regression methodology used to justify the claim. As we should know by now, the first thing he looked at was the residual plot...

Looks fine. However...

Example: Hotel Occupancy Case

... this is a time series regression, as we are regressing one time series on another.

In this case, we should also check whether or not the residuals show some temporal pattern.

If our model is correct the residuals should look iid normal over time.

Example: Hotel Occupancy Case

Does this look like independent normal noise to you? Can you guess what the red line represents?

Example: Hotel Occupancy Case

It looks like part of hotel occupancy (y) not explained by the Chicago downtown occupancy (x) - i.e., the SLR residuals - is moving down over time. We can try to control for that by adding a trend to our model...

$$
\text { Hotel }_{t}=\beta_{0}+\beta_{1} \text { Chicago }+\beta_{2} t+\epsilon_{t}
$$

hotel_ts = ts (hotel)
hotel_fit_2 = tslm(Hotel~Chicago + trend, data=hotel_ts)
coef(hotel_fit_2)
\#\# (Intercept)
Chicago
trend
\#\# $26.6939111 \quad 0.6952379-0.5964767$

Example: Hotel Occupancy Case

Much better!! What is the slope of the red line?

Example: Hotel Occupancy Case

Okay, what happened?!
Well, once we account for the downward trend in the occupancy of the plaintiff, the prediction for the occupancy rate is

$$
26+0.69 * 66-0.59 * 31=53.25 \%
$$

What do we conclude?

Example: Hotel Occupancy Case

Take away lessons...

- When regressing a time series on another, always check the residuals as a time series
- What does that mean... plot the residuals over time. If all is well, you should see no patterns, i.e., they should behave like iid normal samples.

Example: Hotel Occupancy Case

Question

- What if we were interested in predicting the hotel occupancy ten years from now? We would compute

$$
26+0.69 * 66-0.59 * 150=-16.96 \%
$$

- Would you trust this prediction? Could you defend it in court?
- Remember: always be careful with extrapolating relationships!

Examples: Temperatures

Now you need to predict tomorrow's temperature at O'Hare from (Jan-Feb).

Does this look iid? If it is iid, tomorrow's temperatures should not depend on today's... does that make sense?

Checking for Dependence

To see if Y_{t-1} would be useful for predicting Y_{t}, we can plot them together and see if there is a relationship.

Here $\operatorname{Cor}\left(Y_{t}, Y_{t-1}\right)=0.72$. Correlation between Y_{t} and Y_{t-1} is called autocorrelation.

Checking for Dependence

We created a "lagged" variable $\operatorname{temp}_{t-1} \ldots$ the data looks like this:

t	temp (t)	temp $(\mathrm{t}-1)$
1	42	35
2	41	42
3	50	41
4	19	50
5	19	19
6	20	19

Checking for Dependence

We could plot Y_{t} against Y_{t-h} to see h-period lagged relationships. As a shortcut we could make a plot of $\operatorname{Cor}\left(y_{t}, y_{t-h}\right)$ as a funciton of the lag h. This is the autocorrelation function:
acf(ohare_series)

- It appears that the correlation is getting weaker with increasing L.
- How could we test for this dependence?

Checking for Dependence

Back to the "length of a bolt" example. When things are not related in time we should see...

Series ts(bolt)

The $\operatorname{AR}(1)$ Model

A simple way to model dependence over time in with the autoregressive model of order $1 \ldots$

$$
Y_{t}=\beta_{0}+\beta_{1} Y_{t-1}+\epsilon_{t}
$$

- What is the mean of Y_{t} for a given value of Y_{t-1} ?
- If the model successfully captures the dependence structure in the data then the residuals should look iid.
- Remember: if our data is collected in time, we should always check for dependence in the residuals...

The $\operatorname{AR}(1)$ Model

Again, regression is our friend here...

```
##
## Call:
## tslm(formula = y ~ lag1, data = ohare_comb)
##
## Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & 1Q & Median & 3Q & Max \\
\#\# & -18.9308 & -4.8319 & 0.1644 & 4.2484 & 21.3736
\end{tabular}
##
## Coefficients:
\begin{tabular}{lrrrr} 
\#\# & Estimate Std. Error t value \(\operatorname{Pr}(>\mid \mathrm{tl})\) \\
\#\# (Intercept) & 6.70580 & 2.51661 & 2.665 & 0.0101 * \\
\#\# lag1 & 0.72329 & 0.09242 & 7.826 & \(1.5 \mathrm{e}^{*}-10\) ***
\end{tabular}
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.79 on 56 degrees of freedom
## Multiple R-squared: 0.5224,Adjusted R-squared: 0.5138
## F-statistic: 61.24 on 1 and 56 DF, p-value: 1.497e-10
```


The AR(1) Model

If the $\operatorname{AR}(1)$ model fits well, there should be no more time dependence in the residuals...

Series resid(ohare_ar1)

Good!

The AR(1) Model

We can also check residuals vs. time...

Again, looks pretty good...

Forecasting with the $A R(1)$ Model

Forecasting the next observation Y_{T+1} from observations
$Y_{1}, Y_{2}, \ldots Y_{T}$ is straightforward:

$$
E\left(Y_{T+1} \mid Y_{1}, Y_{2}, \ldots Y_{T}\right)=\beta_{0}+\beta_{1} Y_{T}
$$

For prediction intervals we know that

$$
Y_{T+1} \sim N\left(\beta_{0}+\beta_{1} Y_{T}, \sigma^{2}\right)
$$

Just like SLR (this is SLR!), we can use plug-ins b_{0}, b_{1}, and s for β_{0}, β_{1} and σ.
What about 2 steps ahead?

Forecasting with the $A R(1)$ Model

We can write:

$$
\begin{aligned}
Y_{T+2} & =\beta_{0}+\beta_{1} Y_{T+1}+\epsilon_{T+2} \\
& =\beta_{0}+\beta_{1}\left(\beta_{0}+\beta_{1} * Y_{T}+\epsilon_{T+1}\right)+\epsilon_{T+2} \\
& =\left(1+\beta_{1}\right) \beta_{0}+\beta_{1}^{2} * Y_{T}+\beta_{1} \epsilon_{T+1}+\epsilon_{T+2}
\end{aligned}
$$

Remember, all the ϵ 's are independent normally distributed variables with variance σ^{2} So:

$$
\begin{gathered}
E\left(Y_{T+2} \mid Y_{1}, Y_{2}, \ldots Y_{T}\right)=\left(1+\beta_{1}\right) \beta_{0}+\beta_{1}^{2} Y_{T} \\
\operatorname{Var}\left(Y_{T+2} \mid Y_{1}, Y_{2}, \ldots Y_{T}\right)=\left(1+\beta_{1}^{2}\right) \sigma^{2} \\
\left(Y_{T+2} \mid Y_{1}, Y_{2}, \ldots Y_{T}\right) \sim N\left(\left[1+\beta_{1}\right] \beta_{0}+\beta_{1}^{2} Y_{T},\left[1+\beta_{1}^{2}\right] \sigma^{2}\right)
\end{gathered}
$$

We can still use plug-ins b_{0}, b_{1}, and s for β_{0}, β_{1} and σ.

Forecasting with the $A R(1)$ Model

For forecasting h steps ahead,

$$
\begin{aligned}
& E\left(Y_{T+h} \mid Y_{1}, Y_{2}, \ldots Y_{T}\right)=\left(1+\sum_{\ell=1}^{h-1} \beta_{1}^{\ell}\right) \beta_{0}+\beta_{1}^{h} Y_{T} \\
& \quad \operatorname{Var}\left(Y_{T+h} \mid Y_{1}, Y_{2}, \ldots Y_{T}\right)=\left(1+\sum_{\ell=1}^{h-1} \beta_{1}^{2 \ell}\right) \sigma^{2}
\end{aligned}
$$

and the conditional distribution of Y_{T+h} is normal.
Usually, $\left|\beta_{1}\right|<1$. What happens to forecasts when h is large?

Forecasting with the $A R(1)$ Model

Let's look at the O'Hare data. Forecasting 1 day ahead:

(The gray bars are 80 and 95% prediction intervals)

Forecasting with the $A R(1)$ Model

Forecasting 2 days ahead:

(The gray bars are 80 and 95% prediction intervals)

Forecasting with the $A R(1)$ Model

Forecasting 3 days ahead:

(The gray bars are 80 and 95% prediction intervals)

Forecasting with the $A R(1)$ Model

Forecasting 30 days ahead:

Do you trust this model to make long-term forecasts?

The Seasonal Model

- Many time-series data exhibit some sort of seasonality
- The simplest solution is to add a set of dummy variables to deal with the "seasonal effects"

$Y_{t}=$ monthly U.S. beer production (in millions of barrels).

The Seasonal Model

```
beer_series = ts(beer$X1, start=c(1990, 1), frequency=12)
```

```
beer_fit = tslm(beer_series~season)
print(beer_fit)
##
## Call:
## tslm(formula = beer_series ~ season)
##
## Coefficients:
\begin{tabular}{lrrrrr} 
\#\# (Intercept) & season2 & season3 & season4 & season5 \\
\#\# & 15.15333 & -0.21833 & 2.02500 & 2.07167 & 3.17167 \\
\#\# & season6 & season7 & season8 & season9 & season10 \\
\#\# & 3.27833 & 3.06667 & 2.67000 & 0.10500 & 0.01167 \\
\#\# & season11 & season12 & & & \\
\#\# & -1.79333 & -1.91167 & & &
\end{tabular}
```


The Seasonal Model

The fitted model is in red:

What would our future predictions look like?

The Seasonal Model

Forecasts from Linear regression model

Summary

We've looked at modeling and forecasting time series with

- Trends
- Seasonality
- General serial dependence (using lags)

Fundamentally, these are just multiple regression models with special covariates!

Often a proper time series analysis will involve all these pieces...

