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Time Series Data and Dependence

Time-series data are simply a collection of observations gathered

over time. For example, suppose y1 . . . yT are

I Annual GDP.

I Quarterly production levels

I Weekly sales.

I Daily temperature.

I 5 minute stock returns.

In each case, we might expect what happens at time t to be

correlated with what happens at time t − 1.
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Time Series Data and Dependence

Suppose we measure temperatures daily for several years.

Which would work better as an estimate for today’s temp:

I The average of the temperatures from the previous year?

I The temperature on the previous day?
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Example: Length of a bolt...

Suppose you have to check the performance of a machine making

bolts... in order to do so you want to predict the length of the next

bolt produced...

Bolt index (in time)
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What is your best guess for the next part?
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Example: Beer Production

Now, say you want to predict the monthly U.S. beer production (in

millions of barrels).
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What about now, what is your best guess for the production in the next

month?
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Examples: Temperatures

Now you need to predict the temperature on March 1 at O’Hare

using data from Jan-Feb.

Time

oh
ar

e_
se

rie
s

0 10 20 30 40 50 60

0
10

20
30

40
50

Is this one harder? Our goal in this section is to use regression models to

help answer these questions...
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Fitting a Trend

Here’s a time series plot of monthly sales of a company...
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What would be a reasonable prediction for Sales 5 months from

now?
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Fitting a Trend

The sales numbers are “trending” upwards... What model could

capture this trend?

St = β0 + β1t + εt εt ∼ N(0, σ2)

This is a regression of Sales (y variable) on “time” (x variable).

This allows for shifts in the mean of Sales as a function of time.
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Fitting a Trend

The data for this regression looks like:

months(t) Sales

1 69.95

2 59.64

3 61.96

4 61.55

5 45.10

6 77.31

7 49.33

8 65.49

... ...

100 140.27
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Fitting a Trend

St = β0 + β1t + εt εt ∼ N(0, σ2)

library(forecast)

sales_fit = tslm(sales_series~trend)

print(sales_fit)

##

## Call:

## tslm(formula = sales_series ~ trend)

##

## Coefficients:

## (Intercept) trend

## 51.4419 0.9978

Ŝt = 51.44 + 0.998t 10



Fitting a Trend

Plug-in prediction...
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Fitting a Trend
sales_pred = forecast(sales_fit, h=10)

plot(sales_pred)

Forecasts from Linear regression model
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print(sales_pred)

## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

## 101 152.2150 132.8183 171.6117 122.3819 182.0481

## 102 153.2128 133.8047 172.6209 123.3621 183.0634

## 103 154.2105 134.7908 173.6303 124.3420 184.0790

## 104 155.2083 135.7767 174.6398 125.3216 185.0950

## 105 156.2060 136.7624 175.6497 126.3008 186.1113

## 106 157.2038 137.7479 176.6597 127.2797 187.1279

## 107 158.2015 138.7332 177.6699 128.2582 188.1449

## 108 159.1993 139.7182 178.6804 129.2364 189.1621

## 109 160.1970 140.7031 179.6910 130.2143 190.1798

## 110 161.1948 141.6877 180.7019 131.1919 191.1977
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Residuals

How should our residuals look? If our model is correct, the trend

should have captured the time series structure is sales and what is

left, should not be associated with time... i.e., it should be iid

normal.
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Time Series Regression... Hotel Occupancy Case

In a recent legal case, a Chicago downtown hotel claimed that it

had suffered a loss of business due to what was considered an

illegal action by a group of hotels that decided to leave the plaintiff

out of a hotel directory.

In order to estimate the loss business, the hotel had to predict

what its level of business (in terms of occupancy rate) would have

been in the absence of the alleged illegal action.

In order to do this, experts testifying on behalf of the hotel use

data collected before the period in question and fit a relationship

between the hotel’s occupancy rate and overall occupancy rate in

the city of Chicago. This relationship would then be used to

predict occupancy rate during the period in question.
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Example: Hotel Occupancy Case

Hotelt = β0 + β1Chicago + εt

##

## Call:

## lm(formula = Hotel ~ Chicago, data = hotel)

##

## Coefficients:

## (Intercept) Chicago

## 16.1357 0.7161

I In the month after the omission from the directory the

Chicago occupancy rate was 66%. The plaintiff claims that its

occupancy rate should have been 16 + 0.71*66 = 62%.

I It was actually 55%!! The difference added up to a big loss!!15



Example: Hotel Occupancy Case

A statistician was hired by the directory to access the regression

methodology used to justify the claim. As we should know by now,

the first thing he looked at was the residual plot...
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Looks fine. However...
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Example: Hotel Occupancy Case

... this is a time series regression, as we are regressing one time

series on another.

In this case, we should also check whether or not the residuals

show some temporal pattern.

If our model is correct the residuals should look iid normal over

time.
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Example: Hotel Occupancy Case
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Does this look like independent normal noise to you? Can you

guess what the red line represents?
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Example: Hotel Occupancy Case

It looks like part of hotel occupancy (y) not explained by the

Chicago downtown occupancy (x) – i.e., the SLR residuals – is

moving down over time. We can try to control for that by adding a

trend to our model...

Hotelt = β0 + β1Chicago + β2t + εt

hotel_ts = ts(hotel)

hotel_fit_2 = tslm(Hotel~Chicago + trend, data=hotel_ts)

coef(hotel_fit_2)

## (Intercept) Chicago trend

## 26.6939111 0.6952379 -0.5964767
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Example: Hotel Occupancy Case
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Much better!! What is the slope of the red line?
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Example: Hotel Occupancy Case

Okay, what happened?!

Well, once we account for the downward trend in the occupancy of

the plaintiff, the prediction for the occupancy rate is

26 + 0.69 ∗ 66− 0.59 ∗ 31 = 53.25%

What do we conclude?
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Example: Hotel Occupancy Case

Take away lessons...

I When regressing a time series on another, always check the

residuals as a time series

I What does that mean... plot the residuals over time. If all is

well, you should see no patterns, i.e., they should behave like

iid normal samples.
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Example: Hotel Occupancy Case

Question

I What if we were interested in predicting the hotel occupancy

ten years from now? We would compute

26 + 0.69 ∗ 66− 0.59 ∗ 150 = −16.96%

I Would you trust this prediction? Could you defend it in court?

I Remember: always be careful with extrapolating relationships!
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Examples: Temperatures

Now you need to predict tomorrow’s temperature at O’Hare from

(Jan-Feb).
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Does this look iid? If it is iid, tomorrow’s temperatures should not

depend on today’s... does that make sense? 24



Checking for Dependence
To see if Yt−1 would be useful for predicting Yt , we can plot them

together and see if there is a relationship.
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Here Cor(Yt ,Yt−1) = 0.72. Correlation between Yt and Yt−1 is

called autocorrelation. 25



Checking for Dependence

We created a “lagged” variable tempt−1... the data looks like this:

t temp(t) temp(t-1)

1 42 35

2 41 42

3 50 41

4 19 50

5 19 19

6 20 19

... ...
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Checking for Dependence
We could plot Yt against Yt−h to see h-period lagged relationships. As a

shortcut we could make a plot of Cor(yt , yt−h) as a funciton of the

lag h. This is the autocorrelation function:
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I It appears that the correlation is getting weaker with increasing L.

I How could we test for this dependence?
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Checking for Dependence

Back to the “length of a bolt” example. When things are not

related in time we should see...
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The AR(1) Model

A simple way to model dependence over time in with the

autoregressive model of order 1...

Yt = β0 + β1Yt−1 + εt

I What is the mean of Yt for a given value of Yt−1?

I If the model successfully captures the dependence structure in

the data then the residuals should look iid.

I Remember: if our data is collected in time, we should always

check for dependence in the residuals...
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The AR(1) Model
Again, regression is our friend here...

##

## Call:

## tslm(formula = y ~ lag1, data = ohare_comb)

##

## Residuals:

## Min 1Q Median 3Q Max

## -18.9308 -4.8319 0.1644 4.2484 21.3736

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 6.70580 2.51661 2.665 0.0101 *

## lag1 0.72329 0.09242 7.826 1.5e-10 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 8.79 on 56 degrees of freedom

## Multiple R-squared: 0.5224,Adjusted R-squared: 0.5138

## F-statistic: 61.24 on 1 and 56 DF, p-value: 1.497e-10 30



The AR(1) Model

If the AR(1) model fits well, there should be no more time

dependence in the residuals...
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Good!
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The AR(1) Model

We can also check residuals vs. time...
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Again, looks pretty good...
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Forecasting with the AR(1) Model

Forecasting the next observation YT+1 from observations

Y1,Y2, . . .YT is straightforward:

E (YT+1 | Y1,Y2, . . .YT ) = β0 + β1YT

For prediction intervals we know that

YT+1 ∼ N(β0 + β1YT , σ
2)

Just like SLR (this is SLR!), we can use plug-ins b0, b1, and s for

β0, β1 and σ.

What about 2 steps ahead?
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Forecasting with the AR(1) Model

We can write:
YT+2 = β0 + β1YT+1 + εT+2

= β0 + β1(β0 + β1 ∗ YT + εT+1) + εT+2

= (1 + β1)β0 + β21 ∗ YT + β1εT+1 + εT+2

Remember, all the ε’s are independent normally distributed

variables with variance σ2 So:

E (YT+2 | Y1,Y2, . . .YT ) = (1 + β1)β0 + β21YT

Var(YT+2 | Y1,Y2, . . .YT ) = (1 + β21)σ2

(YT+2 | Y1,Y2, . . .YT ) ∼ N([1 + β1]β0 + β21YT , [1 + β21 ]σ2)

We can still use plug-ins b0, b1, and s for β0, β1 and σ.
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Forecasting with the AR(1) Model

For forecasting h steps ahead,

E (YT+h | Y1,Y2, . . .YT ) =

(
1 +

h−1∑
`=1

β`1

)
β0 + βh1YT

Var(YT+h | Y1,Y2, . . .YT ) =

(
1 +

h−1∑
`=1

β2`1

)
σ2

and the conditional distribution of YT+h is normal.

Usually, |β1| < 1. What happens to forecasts when h is large?
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Forecasting with the AR(1) Model

Let’s look at the O’Hare data. Forecasting 1 day ahead:
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(The gray bars are 80 and 95% prediction intervals)
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Forecasting with the AR(1) Model

Forecasting 2 days ahead:
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(The gray bars are 80 and 95% prediction intervals)
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Forecasting with the AR(1) Model

Forecasting 3 days ahead:
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(The gray bars are 80 and 95% prediction intervals)
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Forecasting with the AR(1) Model

Forecasting 30 days ahead:
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Do you trust this model to make long-term forecasts?
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The Seasonal Model

I Many time-series data exhibit some sort of seasonality

I The simplest solution is to add a set of dummy variables to

deal with the “seasonal effects”
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Yt = monthly U.S. beer production (in millions of barrels).
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The Seasonal Model

beer_series = ts(beer$X1, start=c(1990, 1), frequency=12)

beer_fit = tslm(beer_series~season)

print(beer_fit)

##

## Call:

## tslm(formula = beer_series ~ season)

##

## Coefficients:

## (Intercept) season2 season3 season4 season5

## 15.15333 -0.21833 2.02500 2.07167 3.17167

## season6 season7 season8 season9 season10

## 3.27833 3.06667 2.67000 0.10500 0.01167

## season11 season12

## -1.79333 -1.91167
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The Seasonal Model
The fitted model is in red:
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What would our future predictions look like?
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The Seasonal Model

Forecasts from Linear regression model
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Summary

We’ve looked at modeling and forecasting time series with

I Trends

I Seasonality

I General serial dependence (using lags)

Fundamentally, these are just multiple regression models with

special covariates!

Often a proper time series analysis will involve all these pieces...
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