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Regression Model Assumptions

Yi = β0 + β1Xi + ε

Recall the key assumptions of our linear regression model:

(i) The mean of Y is linear in X ′s.

(ii) The additive errors (deviations from line)

I are normally distributed

I independent from each other

I identically distributed (i.e., they have constant variance)

Yi |Xi∼N(β0 + β1Xi , σ
2)
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Regression Model Assumptions

Inference and prediction relies on this model being “true”!

If the model assumptions do not hold, then all bets are off:

I prediction can be systematically biased

I standard errors, intervals, and t-tests are wrong

We will focus on using graphical methods (plots!) to detect

violations of the model assumptions.
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Example
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Here we have two datasets... Which one looks compatible with our

modeling assumptions?
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Output from the two regressions...

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 3.0001 1.1247 2.667 0.02573 *

## x1 0.5001 0.1179 4.241 0.00217 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.237 on 9 degrees of freedom

## Multiple R-squared: 0.6665,Adjusted R-squared: 0.6295

## F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 3.001 1.125 2.667 0.02576 *

## x2 0.500 0.118 4.239 0.00218 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.237 on 9 degrees of freedom

## Multiple R-squared: 0.6662,Adjusted R-squared: 0.6292

## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
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Example

The regression output values are exactly the same...
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Thus, whatever decision or action we might take based on the

output would be the same in both cases!
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Example

...but the residuals (plotted against Ŷ ) look totally different!!
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Plotting e vs Ŷ (and the X’s) is your #1 tool for finding model

fit problems.
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Residual Plots

We use residual plots to “diagnose” potential problems with the

model.

From the model assumptions, the error term (ε) should have a few

properties... we use the residuals (e) as a proxy for the errors as:

εi = yi − (β0 + β1x1i + β2x2i + · · ·+ βpxpi )

≈ yi − (b0 + b1x1i + b2x2i + · · ·+ bpxpi

= ei
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Residual Plots

What kind of properties should the residuals have??

ei ≈ N(0, σ2) iid and independent from the X’s

I We should see no pattern between e and each of the X ’s

I This can be summarized by looking at the plot between

Ŷ and e

I Remember that Ŷ is “pure X”, i.e., a linear function of the

X ’s.

If the model is good, the regression should have pulled out of Y all

of its “x ness”... what is left over (the residuals) should have

nothing to do with X .
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Example – Mid City (Housing)

Left: ŷ vs. y

Right: ŷ vs e
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Example – Mid City (Housing)

Size vs. e
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Example – Mid City (Housing)

I In the Mid City housing example, the residuals plots (both X

vs. e and Ŷ vs. e) showed no obvious problem...

I This is what we want!!

I Although these plots don’t guarantee that all is well it is a

very good sign that the model is doing a good job.
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Non Linearity

Example: Telemarketing

I How does length of employment affect productivity (number

of calls per day)?
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Non Linearity

Example: Telemarketing

I Residual plot highlights the non-linearity!
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Non Linearity

What can we do to fix this?? We can use multiple regression and

transform our X to create a nonlinear model...

Let’s try

Y = β0 + β1X + β2X
2 + ε

The data...

months months2 calls

10 100 18

10 100 19

11 121 22

14 196 23

15 225 25

... ... ... 15



Telemarketing: Adding a squared term

In R, the quickest way to add a quadratic term (or other

transformation) is using I() in the formula:

telefit2 = lm(calls~months + I(months^2), data=tele)

print(telefit2)

##

## Call:

## lm(formula = calls ~ months + I(months^2), data = tele)

##

## Coefficients:

## (Intercept) months I(months^2)

## -0.14047 2.31020 -0.04012
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Telemarketing

ŷi = b0 + b1xi + b2x
2
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Telemarketing

What is the marginal effect of X on Y?

∂E[Y |X ]

∂X
= β1 + 2β2X

I To better understand the impact of changes in X on Y you

should evaluate different scenarios.

I Moving from 10 to 11 months of employment raises

productivity by 1.47 calls

I Going from 25 to 26 months only raises the number of calls

by 0.27.

I This is similar to variable interactions we saw earlier. “The

effect of X1 on the predicted value of Y depends on the value

of X2”. Here, X1 and X2 are the same variable! 18



Polynomial Regression

Even though we are limited to a linear mean, it is possible to get

nonlinear regression by transforming the X variable.

In general, we can add powers of X to get polynomial regression:

Y = β0 + β1X + β2X
2 . . .+ βmX

m

You can fit basically any mean function if m is big enough.

Usually, m = 2 does the trick.
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Closing Comments on Polynomials

We can always add higher powers (cubic, etc) if necessary.

Be very careful about predicting outside the data range. The curve

may do unintended things beyond the observed data.

Watch out for over-fitting... remember, simple models are

“better”.
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Be careful when extrapolating...
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...and, be careful when adding more polynomial terms!
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Non-constant Variance

Example...

This violates our assumption that all εi have the same σ2.

23



Non-constant Variance

Consider the following relationship between Y and X :

Y = γ0X
β1(1 + R)

where we think about R as a random percentage error.

I On average we assume R is 0...

I but when it turns out to be 0.1, Y goes up by 10%!

I Often we see this, the errors are multiplicative and the

variation is something like ±10% and not ±10.

I This leads to non-constant variance (or heteroskedasticity)
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The Log-Log Model

We have data on Y and X and we still want to use a linear

regression model to understand their relationship... what if we take

the log (natural log) of Y ?

log(Y ) = log
[
γ0X

β1(1 + R)
]

log(Y ) = log(γ0) + β1 log(X ) + log(1 + R)

Now, if we call β0 = log(γ0) and ε = log(1 + R) the above leads to

log(Y ) = β0 + β1 log(X ) + ε

a linear regression of log(Y ) on log(X )!

25



Price Elasticity

In economics, the slope coefficient β1 in the regression

log(sales) = β0 + β1 log(price) + ε is called price elasticity.

This is the % change in expected sales per 1% change in price.

The model implies that E [sales] = A ∗ priceβ1

where A = exp(β0)
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Price Elasticity of OJ

A chain of gas station convenience stores was interested in the

dependence between price of and sales for orange juice...

They decided to run an experiment and change prices randomly at

different locations. With the data in hand, let’s first run an

regression of Sales on Price:

Sales = β0 + β1Price + ε

lm(Sales~Price, data=oj)

##

## Call:

## lm(formula = Sales ~ Price, data = oj)

##

## Coefficients:

## (Intercept) Price

## 89.64 -20.93 27



Price Elasticity of OJ
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No good!!
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Price Elasticity of OJ

But... would you really think this relationship would be linear? Is

moving a price from $1 to $2 is the same as changing it form $10

to $11??
log(Sales) = γ0 + γ1 log(Price) + ε

ojfitelas = lm(log(Sales)~log(Price), data=oj)

coef(ojfitelas)

## (Intercept) log(Price)

## 4.811646 -1.752383

How do we interpret γ̂1 = −1.75?

(When prices go up 1%, sales go down by 1.75%)
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Price Elasticity of OJ

print(ojfitelas)

##

## Call:

## lm(formula = log(Sales) ~ log(Price), data = oj)

##

## Coefficients:

## (Intercept) log(Price)

## 4.812 -1.752

How do we interpret γ̂1 = −1.75?

(When prices go up 1%, sales go down by 1.75%)
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Price Elasticity of OJ
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Much better!!
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Making Predictions

What if the gas station store wants to predict their sales of OJ if

they decide to price it at $1.8?

The predicted log(Sales) = 4.812 + (−1.752)× log(1.8) = 3.78

So, the predicted Sales = exp(3.78) = 43.82.

How about the plug-in prediction interval?

In the log scale, our predicted interval in

[ ̂log(Sales)− 2s; ̂log(Sales) + 2s] =

[3.78− 2(0.38); 3.78 + 2(0.38)] = [3.02; 4.54].

In terms of actual Sales the interval is

[exp(3.02), exp(4.54)] = [20.5; 93.7]
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Making Predictions
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I In the log scale (right) we have [Ŷ − 2s; Ŷ + 2s]

I In the original scale (left) we have

[exp(Ŷ ) ∗ exp(−2s); exp(Ŷ ) exp(2s)]
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Some additional comments...

I Another useful transformation to deal with non-constant

variance is to take only the log(Y ) and keep X the same.

Clearly the “elasticity” interpretation no longer holds.

I Always be careful in interpreting the models after a

transformation

I Also be careful in using the transformed model to make

predictions
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Summary of Transformations

Coming up with a good regression model is usually an iterative

procedure. Use plots of residuals vs X or Ŷ to determine the next

step.

Log transform is your best friend when dealing with non-constant

variance (log(X ), log(Y ), or both).

Add polynomial terms (e.g. X 2) to get nonlinear regression.

The bottom line: you should combine what the plots and the

regression output are telling you with your common sense and

knowledge about the problem. Keep iterating until you a model

that makes sense and has nothing obviously wrong with it.
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Outliers

[fragile]

Body weight vs. brain weight...

X =body weight of a mammal in kilograms

Y =brain weight of a mammal in grams
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Does a linear model make sense here? 36



Outliers

Let’s try logs...
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Better, but could we be missing less obvious outliers?
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Checking for Outliers with Standardized Residuals

In our model ε ∼ N(0, σ2)

The residuals e are a proxy for ε and the standard error s is an

estimate for σ

Call z = e/s, the standardized residuals... We should expect

z ≈ N(0, 1)

(How aften should we see an observation of |z | > 3?)
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Standardized residual plots

plot(rstandard(mamfit)~log(body), data=mammals, ylim=c(-4,4))

abline(h=c(-3,3), col='red')
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One large positive outlier...
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Outliers

It turns out that the data had the brain of a Chinchilla weighting

64 grams!! In reality, it is 6.4 grams... after correcting it:
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How to Deal with Outliers

When should you delete outliers?

Only when you have a really good reason!

There is nothing wrong with running regression with and without

potential outliers to see whether results are significantly impacted.

Any time outliers are dropped the reasons for

removing observations should be clearly noted.
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