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Example: Detecting Sex Discrimination

Imagine you are a trial lawyer and you want to file a suit against a

company for salary discrimination... you gather the following

data...

Gender Salary

1 Male 32.0

2 Female 39.1

3 Female 33.2

4 Female 30.6

5 Male 29.0

... ... ...

208 Female 30.0
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Detecting Sex Discrimination

You want to relate salary(Y ) to gender(X )... how can we do that?

Gender is an example of a categorical variable. The variable gender

separates our data into 2 groups or categories. The question we

want to answer is: “how is your salary related to which group you

belong to...”

Could we think about additional examples of categories potentially

associated with salary?

I Level of education

I Length of experience

I What else?
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Detecting Sex Discrimination

We can use regression to answer these question but we need to

recode the categorical variable into a dummy variable

Gender Salary Male

1 Male 32.00 1

2 Female 39.10 0

3 Female 33.20 0

4 Female 30.60 0

5 Male 29.00 1

... ... ...

208 Female 30.00 0

Note: In R, categorical variables are known as factors. R will turn

factor variables into dummies for you.
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Detecting Sex Discrimination
head(salary)

## # A tibble: 6 x 10

## Employee EducLev JobGrade YrHired YrBorn Gender YrsPrior PCJob Salary

## <int> <int> <int> <int> <int> <chr> <int> <chr> <dbl>

## 1 1 3 1 92 69 Male 1 No 32.0

## 2 2 1 1 81 57 Female 1 No 39.1

## 3 3 1 1 83 60 Female 0 No 33.2

## 4 4 2 1 87 55 Female 7 No 30.6

## 5 5 3 1 92 67 Male 0 No 29.0

## 6 6 3 1 92 71 Female 0 No 30.5

## # ... with 1 more variables: Exp <dbl>

read csv has made Gender into a factor already, but you can also

do it yourself:

salary$Gender = factor(salary$Gender)
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Detecting Sex Discrimination

Now you can present the following model in court:

Salaryi = β0 + β1Malei + εi

How do you interpret β1?

E [Salary |Male = 0] = β0

E [Salary |Male = 1] = β0 + β1

β1 is the male/female difference
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Detecting Sex Discrimination

Salaryi = β0 + β1Malei + εi

salaryfit = lm(Salary~Gender, data=salary)

coef(salaryfit)

## (Intercept) GenderMale

## 37.209929 8.295513

confint(salaryfit)

## 2.5 % 97.5 %

## (Intercept) 35.446314 38.97354

## GenderMale 5.211041 11.37998

β̂1 = b1 = 8.29... on average, a male makes approximately $8,300

more than a female in this firm.

How should the plaintiff’s lawyer use the confidence interval in his

presentation?
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Detecting Sex Discrimination

How can the defense attorney try to counteract the plaintiff’s

argument?

Perhaps, the observed difference in salaries is related to other

variables in the background and NOT to policy discrimination...

Obviously, there are many other factors which we can legitimately

use in determining salaries:

I education

I job productivity

I experience

How can we use regression to incorporate additional information?
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Detecting Sex Discrimination

Let’s add a measure of experience...

Salaryi = β0 + β1Malei + β2Expi + εi

What does that mean?

E [Salary |Male = 0,Exp] = β0 + β2Exp

E [Salary |Male = 1,Exp] = (β0 + β1) + β2Exp
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Detecting Sex Discrimination

Exp Gender Salary Male

1 3 Male 32.00 1

2 14 Female 39.10 0

3 12 Female 33.20 0

4 8 Female 30.60 0

5 3 Male 29.00 1

... ... ...

208 33 Female 30.00 0
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Detecting Sex Discrimination

Salaryi = β0 + β1Malei + β2Expi + εi

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 26.83075 1.08926 24.632 < 2e-16 ***

## GenderMale 8.01189 1.19309 6.715 1.81e-10 ***

## Exp 0.98115 0.08028 12.221 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 8.07 on 205 degrees of freedom

## Multiple R-squared: 0.491,Adjusted R-squared: 0.486

## F-statistic: 98.86 on 2 and 205 DF, p-value: < 2.2e-16

Salaryi = 27 + 8Malei + 0.98Expi + εi

Is this good or bad news for the defense? 11



Detecting Sex Discrimination

Salaryi =

{
27 + 0.98Expi + εi females

35 + 0.98Expi + εi males

plotModel(salaryfit_exp, Salary~Exp)
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More than Two Categories

We can use dummy variables in situations in which there are more

than two categories. Dummy variables are needed for each

category except one, designated as the “base” category.

Why? Remember that the numerical value of each category has no

quantitative meaning!
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Example: House Prices

We want to evaluate the difference in house prices in different

neighborhoods.

Nbhd SqFt Price

1 2 1.79 114.3

2 2 2.03 114.2

3 2 1.74 114.8

4 2 1.98 94.7

5 2 2.13 119.8

6 1 1.78 114.6

7 3 1.83 151.6

8 3 2.16 150.7

... ... ... ...
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Example: House Prices

Let’s create the dummy variables dn1, dn2 and dn3...

Nbhd SqFt Price dn1 dn2 dn3

1 2 1.79 114.3 0 1 0

2 2 2.03 114.2 0 1 0

3 2 1.74 114.8 0 1 0

4 2 1.98 94.7 0 1 0

5 2 2.13 119.8 0 1 0

6 1 1.78 114.6 1 0 0

7 3 1.83 151.6 0 0 1

8 3 2.16 150.7 0 0 1

... ... ...

(Again, R will do this for you if you make Nbhd a factor)
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Example: House Prices

Pricei = β0 + β1dn2i + β2dn3i + β3Sizei + εi

E [Price|dn2 = 0, dn3 = 0,Size] = β0 + β3Size (Nbhd 1)

E [Price|dn2 = 1, dn3 = 0,Size] = β0 + β1 + β3Size (Nbhd 2)

E [Price|dn2 = 0, dn3 = 1,Size] = β0 + β2 + β3Size (Nbhd 3)
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Example: House Prices

Price = β0 + β1dn2 + β2dn3 + β3Size + ε

housing_fit = lm(Price~factor(Nbhd) + Size, data=housing)

coef(housing_fit)

## (Intercept) factor(Nbhd)2 factor(Nbhd)3 Size

## 21.24 10.57 41.54 46.39

Price = 21.24 + 10.57dn2 + 41.54dn3 + 46.39Size + ε
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Example: House Prices

plotModel(housing_fit, Price~Size)
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Example: House Prices

Price = β0 + β1Size + ε

lm(Price~Size, data=housing)

##

## Call:

## lm(formula = Price ~ Size, data = housing)

##

## Coefficients:

## (Intercept) Size

## -10.09 70.23

Price = −10.09 + 70.23Size + ε
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Example: House Prices
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Back to the Sex Discrimination Case

plotModel(salaryfit_exp, Salary~Exp)
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Does it look like the effect of experience on salary is the same for

males and females?
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Back to the Sex Discrimination Case

Could we try to expand our analysis by allowing a different slope

for each group?

Yes... Consider the following model:

Salaryi = β0 + β1Expi + β2Malei + β3Expi ×Malei + εi

For Females:

Salaryi = β0 + β1Expi + εi

For Males:

Salaryi = (β0 + β2) + (β1 + β3)Expi + εi
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Sex Discrimination Case

What do the data look like?

Exp Gender Salary Male Exp*Male

1 3 Male 32.00 1 3

2 14 Female 39.10 0 0

3 12 Female 33.20 0 0

4 8 Female 30.60 0 0

5 3 Male 29.00 1 3

... ... ...

208 33 Female 30.00 0 0
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Sex Discrimination Case

salaryfit_int = lm(Salary~Gender*Exp, data=salary)

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 34.2483 1.2274 27.903 < 2e-16 ***

## GenderMale -5.3461 1.7766 -3.009 0.00295 **

## Exp 0.2800 0.1025 2.733 0.00684 **

## GenderMale:Exp 1.2478 0.1367 9.130 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 6.816 on 204 degrees of freedom

## Multiple R-squared: 0.6386,Adjusted R-squared: 0.6333

## F-statistic: 120.2 on 3 and 204 DF, p-value: < 2.2e-16

Is this good or bad news for the plaintiff?
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Sex Discrimination Case

Salary = β0 + β1Sex + β2Exp + β3Exp ∗Male + ε

plotModel(salaryfit_int, Salary~Exp)
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Salary = 34− 4Sex + 0.28Exp + 1.24Exp ∗Male + ε
25



Variable Interaction

So, the effect of experience on salary is different for males and

females... in general, when the effect of the variable X1 on Y

depends on another variable X2 we say that X1 and X2 interact

with each other.

We can extend this notion by the inclusion of multiplicative effects

by constructing interaction terms.

Y = β0 + β1X1 + β2X2 + β3(X1X2) + ε

∂E[Y |X1,X2]

∂X1
= β1 + β3X2
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Example: College GPA and Age

Consider the relationship between undergrad and MBA grades:

A model to predict McCombs GPA from undergrad GPA could be

GPAMBA = β0 + β1GPA
Bach + ε

Estimate Std.Error t value Pr(>|t|)

BachGPA 0.26269 0.09244 2.842 0.00607 **

For every 1 point increase in college GPA, your expected

GPA at McCombs increases by about .26 points.
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College GPA and Age

However, this model assumes that the marginal effect

of College GPA is the same for any age.

It seems that how you did in college should have less effect on your

MBA GPA as you get older (farther from college).

We can account for this intuition with an interaction term:

GPAMBA = β0 + β1GPA
Bach + β2Age + β3(Age × GPABach) + ε

Now, the college effect is ∂E[GPAMBA|GPABach Age]
∂GPABach = β1 + β3Age.

Depends on Age!
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College GPA and Age

lm(MBAGPA ~ BachGPA*Age, data=gpa)

##

## Call:

## lm(formula = MBAGPA ~ BachGPA * Age, data = gpa)

##

## Coefficients:

## (Intercept) BachGPA Age BachGPA:Age

## -0.27964 1.36936 0.10974 -0.04181
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College GPA and Age

Without the interaction term

I Marginal effect of College GPA is b1 = 0.26.

With the interaction term:

I Marginal effect is b1 + b3Age = 1.37− 0.042Age.

Age Marginal Effect

24 0.36

27 0.24

30 0.11
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Interactions: Things to remember

Never try to interpret/test the main effect of a variable involved in

an interaction. (You can’t hold the interaction constant and vary

the main effect!)

While it can occasionally make sense to omit main effects, usually

if an interaction between two variables is present you should

include both main effects .
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