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Multiple Linear Regression: Inference and Understanding

We can answer new questions with MLR:

I Are any of the independent variables predictive of the

response?

I What’s the effect of Xj controlling for other factors (other

X’s)?

Interpreting and understanding MLR is a little more complicated

than SLR...
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Understanding Multiple Regression

The Sales Data:

I Sales : units sold in excess of a baseline

I P1: our price in $ (in excess of a baseline price)

I P2: competitors price (again, over a baseline)
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Understanding Multiple Regression

I If we regress Sales on our own price alone, we obtain a

surprising conclusion... the higher the price the more we sell!!

27

The Sales Data

In this data we have weekly observations on
sales:# units (in excess of base level)
p1=our price: $ (in excess of base)
p2=competitors price: $ (in excess of base).

p1 p2 Sales
5.13567 5.2042 144.49
3.49546 8.0597 637.25
7.27534 11.6760 620.79
4.66282 8.3644 549.01
...
...

(each row corresponds
to a week)

If we regress
Sales on 
own price,
we obtain the
somewhat
surprising
conclusion
that a higher
price is associated
with more sales!!
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S = 223.401      R-Sq = 19.6 %      R-Sq(adj) = 18.8 %

Sales = 211.165 + 63.7130 p1

Regression Plot

The regression line
has a positive slope !!

I It looks like we should just raise our prices, right? NO, not if

you have taken this statistics class!
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Understanding Multiple Regression

I The regression equation for Sales on own price (P1) is:

Sales = 211 + 63.7P1

I If now we add the competitors price to the regression we get

Sales = 116− 97.7P1 + 109P2

I Does this look better? How did it happen?

I Remember: −97.7 is the effect on sales of a change in P1

with P2 held fixed!!
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Understanding Multiple Regression

I How can we see what is going on? Let’s compare Sales in two

different observations: weeks 82 and 99.

I We see that an increase in P1, holding P2 constant,

corresponds to a drop in Sales!
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Sales on own price:

The multiple regression of Sales on own price (p1) and
competitor's price (p2) yield more intuitive signs:

How does this happen ?

The regression equation is
Sales = 211 + 63.7 p1

The regression equation is
Sales = 116 - 97.7 p1 + 109 p2

Remember: -97.7 is the affect on sales of a change in
p1 with p2 held fixed !!
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If we compares sales in weeks 82 and 99, we 
see that an increase in p1, holding p2 constant
(82 to 99) corresponds to a drop is sales.

How can we see what is going on ?

Note the strong relationship between p1 and p2 !!I Note the strong relationship (dependence) between P1 and

P2! 6



Understanding Multiple Regression

I Let’s look at a subset of points where P1 varies and P2 is

held approximately constant...
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Here we select a subset of points where p varies
and p2 does is help approximately constant.

For a fixed level of p2, variation in p1 is negatively
correlated with sale!
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Different colors indicate different ranges of p2.
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for each fixed level of p2
there is a negative relationship
between sales and p1

larger p1 are associated with
larger p2

I For a fixed level of P2, variation in P1 is negatively correlated

with Sales!!
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Understanding Multiple Regression

I Below, different colors indicate different ranges for P2...

29
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Here we select a subset of points where p varies
and p2 does is help approximately constant.

For a fixed level of p2, variation in p1 is negatively
correlated with sale!
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Understanding Multiple Regression

I Summary:

1. A larger P1 is associated with larger P2 and the overall effect

leads to bigger sales

2. With P2 held fixed, a larger P1 leads to lower sales

3. MLR does the trick and unveils the “correct” economic

relationship between Sales and prices!
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Confidence Intervals for Individual Coefficients

As in SLR, the sampling distribution tells us how far we can expect

bj to be from βj

The LS estimators are unbiased: E [bj ] = βj for j = 0, . . . , d .

I The sampling distribution of each coefficient’s estimator is

bj ∼ N(βj , s
2
bj

)
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Confidence Intervals for Individual Coefficients

Computing confidence intervals and t-statistics are exactly the

same as in SLR.

I A 95% C.I. for βj is approximately bj ± 2sbj

I The t-stat: tj =
(bj − β0j )

sbj
is the number of standard errors

between the LS estimate and the null value (β0j )

I As before, we reject the null when t-stat is greater than 2 in

absolute value

I Also as before, a small p-value leads to a rejection of the null

I Rejecting when the p-value is less than 0.05 is equivalent to

rejecting when the |tj | > 2
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In R... Do we know all of these numbers?

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 115.717 8.548 13.54 <2e-16 ***

## p1 -97.657 2.669 -36.59 <2e-16 ***

## p2 108.800 1.409 77.20 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 28.42 on 97 degrees of freedom

## Multiple R-squared: 0.9871,Adjusted R-squared: 0.9869

## F-statistic: 3717 on 2 and 97 DF, p-value: < 2.2e-16

95% C.I. for β1 ≈ b1± 2× sb1

[−97.66− 2× 2.67;−97.66 + 2× 2.67] = [−102.95;−92.36]
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Confidence Intervals for Individual Coefficients

IMPORTANT: Intervals and testing via bj & sbj are one-at-a-time

procedures:

I You are evaluating the j th coefficient conditional on the other

X ’s being in the model, but regardless of the values you’ve

estimated for the other b’s.

Remember: βj gives us the effect of a one-unit change in Xj ,

holding the other X’s in the model constant.
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Understanding Multiple Regression

Beer Data (from an MBA class)

I nbeer – number of beers before getting drunk

I height and weight

31

The regression equation is
nbeer = - 36.9 + 0.643 height

Predictor       Coef StDev T        P
Constant     -36.920       8.956      -4.12    0.000
height        0.6430      0.1296       4.96    0.000
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Is nbeer related
to height ?

No, not all.

nbeer weight
weight    0.692
height    0.582    0.806

The correlations:

The regression equation is
nbeer = - 11.2 + 0.078 height + 0.0853 weight

Predictor       Coef StDev T        P
Constant      -11.19       10.77      -1.04    0.304
height        0.0775      0.1960       0.40    0.694
weight       0.08530     0.02381       3.58    0.001

S = 2.784       R-Sq = 48.1%     R-Sq(adj) = 45.9%

The two x’s are
highly correlated !!

Is number of beers related to height? 14



Understanding Multiple Regression

nbeers = β0 + β1height + ε

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -36.9200 8.9560 -4.122 0.000148 ***

## height 0.6430 0.1296 4.960 9.23e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 3.109 on 48 degrees of freedom

## Multiple R-squared: 0.3389,Adjusted R-squared: 0.3251

## F-statistic: 24.6 on 1 and 48 DF, p-value: 9.23e-06

Yes! Beers and height are related...
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Understanding Multiple Regression

nbeers = β0 + β1weight + β2height + ε

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -11.18709 10.76821 -1.039 0.304167

## height 0.07751 0.19598 0.396 0.694254

## weight 0.08530 0.02381 3.582 0.000806 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2.784 on 47 degrees of freedom

## Multiple R-squared: 0.4807,Adjusted R-squared: 0.4586

## F-statistic: 21.75 on 2 and 47 DF, p-value: 2.056e-07

What about now?? Height is not necessarily a factor...
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Understanding Multiple Regression

31

The regression equation is
nbeer = - 36.9 + 0.643 height

Predictor       Coef StDev T        P
Constant     -36.920       8.956      -4.12    0.000
height        0.6430      0.1296       4.96    0.000
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Yes,
very clearly.
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Is nbeer related
to height ?

No, not all.

nbeer weight
weight    0.692
height    0.582    0.806

The correlations:

The regression equation is
nbeer = - 11.2 + 0.078 height + 0.0853 weight

Predictor       Coef StDev T        P
Constant      -11.19       10.77      -1.04    0.304
height        0.0775      0.1960       0.40    0.694
weight       0.08530     0.02381       3.58    0.001

S = 2.784       R-Sq = 48.1%     R-Sq(adj) = 45.9%

The two x’s are
highly correlated !!

I If we regress “beers” only on height we see an effect. Bigger

heights → more beers, on average.

I However, when height goes up weight tends to go up as well...

in the first regression, height was a proxy for the real cause of

drinking ability. Bigger people can drink more and weight is a

more relevant measure of “bigness”. 17



Understanding Multiple Regression

31

The regression equation is
nbeer = - 36.9 + 0.643 height

Predictor       Coef StDev T        P
Constant     -36.920       8.956      -4.12    0.000
height        0.6430      0.1296       4.96    0.000

75706560

20

10

0

height

nb
ee

r

Is nbeer related
to height ?

Yes,
very clearly.
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Is nbeer related
to height ?

No, not all.

nbeer weight
weight    0.692
height    0.582    0.806

The correlations:

The regression equation is
nbeer = - 11.2 + 0.078 height + 0.0853 weight

Predictor       Coef StDev T        P
Constant      -11.19       10.77      -1.04    0.304
height        0.0775      0.1960       0.40    0.694
weight       0.08530     0.02381       3.58    0.001

S = 2.784       R-Sq = 48.1%     R-Sq(adj) = 45.9%

The two x’s are
highly correlated !!

I In the multiple regression, when we consider only the variation

in height that is not associated with variation in weight, we

see no relationship between height and beers.
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Understanding Multiple Regression

nbeers = β0 + β1weight + ε

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -7.02070 2.21329 -3.172 0.00264 **

## weight 0.09289 0.01399 6.642 2.6e-08 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2.76 on 48 degrees of freedom

## Multiple R-squared: 0.4789,Adjusted R-squared: 0.4681

## F-statistic: 44.12 on 1 and 48 DF, p-value: 2.602e-08

Why is this a better model than the one with weight and height??
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Understanding Multiple Regression

In general, when we see a relationship between y and x (or x ’s),

that relationship may be driven by variables “lurking” in the

background which are related to your current x ’s.

This makes it hard to reliably find “causal” relationships. Any

correlation (association) you find could be caused by other

variables in the background... correlation is NOT causation

Any time a report says two variables are related and there’s a

suggestion of a “causal” relationship, ask yourself whether or not

other variables might be the real reason for the effect. Multiple

regression allows us to control for all important variables by

including them into the regression. “Once we control for weight,

height and beers are NOT related”!! 20



correlation is NOT causation

also...

I http://www.tylervigen.com/spurious-correlations
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Understanding Multiple Regression

I With the above examples we saw how the relationship

amongst the X ’s can affect our interpretation of a multiple

regression... we will now look at how these dependencies will

inflate the standard errors for the regression coefficients, and

hence our uncertainty about them.

I Remember that in simple linear regression our uncertainty

about b1 is measured by

s2b1 =
s2

(n − 1)s2x

I The more variation in X (the larger s2x ) the more “we know”

about β1... ie, our error (b1 − β1) tends to be smaller.
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Understanding Multiple Regression

I In MLR we relate the variation in Y to the variation in an X

holding the other X ’s fixed. So, we need to know how much

each X varies on its own.

I We can relate the standard errors in MLR to the standard

errors from SLR: With two X s,

s2bj =
1

1− r2x1x2
× s2

(n − 1)s2xj

where rx1x2 = cor(x1, x2). The SE in MLR increases by a

factor of 1
1−r2x1x2

relative to simple linear regression.
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Understanding Multiple Regression

I In MLR we relate the variation in Y to the variation in an X

holding the other X ’s fixed. So, we need to know how much

each X varies on its own.

I In general, with p covariates,

s2bj =
1

1− R2
j

× s2

(n − 1)s2xj

where R2
j is the R2 from regressing Xj on the other X ’s.

I When there are strong dependencies between the covariates

(known as multicollinearity), it is hard to attribute predictive

ability to any of them individually.
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Back to Baseball

R/G = β0 + β1OBP + β2SLG + ε

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -7.0143 0.8199 -8.555 3.61e-09 ***

## OBP 27.5929 4.0032 6.893 2.09e-07 ***

## SLG 6.0311 2.0215 2.983 0.00598 **

Compare the std error to the model with OBP alone:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -7.7816 0.8816 -8.827 1.40e-09 ***

## OBP 37.4593 2.5544 14.665 1.15e-14 ***

Even though s2 is smaller in the MLR model (check it out!), the
SE on OBP is higher than in SLR, since

cor(baseball$OBP, baseball$SLG)

## [1] 0.8261033
25



F-tests

I In many situations, we need a testing procedure that can

address simultaneous hypotheses about more than one

coefficient

I Why not the t-test?

I We will look at the Overall Test of Significance... the F-test.

It will help us determine whether or not our regression is

worth anything!
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Supervisor Performance Data

Suppose you are interested in the relationship between the overall

performance of supervisors to specific activities involving

interactions between supervisors and employees (from a psychology

management study)

The Data

I Y = Overall rating of supervisor

I X1 = Handles employee complaints

I X2 = Does not allow special privileges

I X3 = Opportunity to learn new things

I X4 = Raises based on performance

I X5 = Too critical of poor performance

I X6 = Rate of advancing to better jobs 27



Supervisor Performance Data

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 10.78708 11.58926 0.931 0.361634

## X1 0.61319 0.16098 3.809 0.000903 ***

## X2 -0.07305 0.13572 -0.538 0.595594

## X3 0.32033 0.16852 1.901 0.069925 .

## X4 0.08173 0.22148 0.369 0.715480

## X5 0.03838 0.14700 0.261 0.796334

## X6 -0.21706 0.17821 -1.218 0.235577

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 7.068 on 23 degrees of freedom

## Multiple R-squared: 0.7326,Adjusted R-squared: 0.6628

## F-statistic: 10.5 on 6 and 23 DF, p-value: 1.24e-05

Is there any relationship here at all? Which bj ’s are significant?
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Why not look at R2

I R2 in MLR ALWAYS grows as we increase the number of

explanatory variables.

I Even if there is no relationship between the X ′s and Y ,

R2 > 0!!

I Adjusted R2 is a (not great) attempt at fixing the problem

I To see this let’s look at some “Garbage” Data
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Garbage Data

I made up 6 “garbage” variables that have nothing to do with Y ...

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 63.95079 2.56337 24.948 <2e-16 ***

## G.1 -3.30589 2.28921 -1.444 0.1622

## G.2 2.82356 2.73411 1.033 0.3125

## G.3 -1.67550 2.20049 -0.761 0.4541

## G.4 -0.08067 2.74747 -0.029 0.9768

## G.5 3.61861 2.04390 1.770 0.0899 .

## G.6 -0.93827 2.27453 -0.413 0.6838

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 11.81 on 23 degrees of freedom

## Multiple R-squared: 0.2536,Adjusted R-squared: 0.05889

## F-statistic: 1.302 on 6 and 23 DF, p-value: 0.2955

30



Garbage Data

I R2 is 0.25 !!

I We need to develop a way to see whether a R2 of 0.25 can

happen by chance when all the true β’s are zero.

I It turns out that if we transform R2 we can solve this...

Define

f =
R2/p

(1− R2)/(n − p − 1)
=

R2

(1− R2)
× n − p − 1

p

Big f → big R2 but we know what kind of f we are likely to get

when all the coefficients are indeed zero (i.e., we know the

probability distribution of f when all βj = 0). We use this to

decide if “big” is “big enough”.
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The F -test

We are testing:

H0 : β1 = β2 = . . . βp = 0

H1 : at least one βj 6= 0.

This is the F-test of overall significance. Under the null hypothesis

f is distributed:

f ∼ Fp,n−p−1

32



The F -test
What kind of distribution is this?
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It is a right skewed, positive valued family of distributions indexed

by two parameters (the two “degrees of freedom”). 33



F-test

The p-value for the F -test is

p-value = Pr(Fp,n−p−1 > f )

I We usually reject the null when the p-value is less than 5%.

I Big f → REJECT!

I Small p-value → REJECT!

In R, the last line of summary gives the F statistic and p−value.
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The F-test

Let’s check this test for the “garbage” data...

## Residual standard error: 11.81 on 23 degrees of freedom

## Multiple R-squared: 0.2536,Adjusted R-squared: 0.05889

## F-statistic: 1.302 on 6 and 23 DF, p-value: 0.2955

How about the original analysis (survey variables)...

## Residual standard error: 7.068 on 23 degrees of freedom

## Multiple R-squared: 0.7326,Adjusted R-squared: 0.6628

## F-statistic: 10.5 on 6 and 23 DF, p-value: 1.24e-05
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MLR: Things to remember

I Intervals are your friend! Understanding uncertainty is a key

element for sound business decisions.

I Correlation is NOT causation!

I When presented with a analysis from a regression model or

any analysis that implies a causal relationship, skepticism is

always a good first response! Ask the question... “is there an

alternative explanation for this result”?

I Simple models are often better than very complex alternatives
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