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The Multiple Regression Model

Many problems involve more than one independent variable or

factor which affects the dependent or response variable.

I More than size to predict house price!

I Demand for a product given prices of competing brands,

advertising,house hold attributes, etc.

In SLR, the conditional mean of Y depends on X. The Multiple

Linear Regression (MLR) model extends this idea to include more

than one independent variable.

2



The MLR Model
Same as always, but with more covariates.

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε

Recall the key assumptions of our linear regression model:

(i) The conditional mean of Y is linear in the Xj variables.

(ii) The error term (deviations from line)

I are normally distributed

I independent from each other

I identically distributed (i.e., they have constant variance)

(Y |X1 . . .Xp) ∼ N(β0 + β1X1 . . . + βpXp, σ
2)
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The MLR Model

Our interpretation of regression coefficients can be extended from

the simple single covariate regression case:

βj =
∂E [Y |X1, . . . ,Xp]

∂Xj

Holding all other variables constant, βj is the

average change in Y per unit change in Xj .
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The MLR Model
If p = 2, we can plot the regression surface in 3D.

Consider sales of a product as predicted by price of this product

(P1) and the price of a competing product (P2).

Sales = β0 + β1P1 + β2P2 + ε
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Parameter Estimation

Y = β0 + β1X1 . . .+ βpXp + ε, ε ∼ N(0, σ2)

How do we estimate the MLR model parameters?

The principle of Least Squares is exactly the same as before:

I Define the fitted values

I Find the best fitting plane by minimizing the sum of squared

residuals.

Then we can use the least squares estimates to find s...
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Least Squares

Just as before, each bi is our estimate of βi

Fitted Values: Ŷi = b0 + b1X1i + b2X2i . . .+ bpXp.

Residuals: ei = Yi − Ŷi .

Least Squares: Find b0, b1, b2, . . . , bp to minimize
∑n

i=1 e
2
i .

In MLR the formulas for the bj ’s are too complicated so we won’t

talk about them...
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Least Squares

8



Residual Standard Error

The calculation for s2 is exactly the same:

s2 =

∑n
i=1 e

2
i

n − p − 1
=

∑n
i=1(Yi − Ŷi)

2

n − p − 1

I Ŷi = b0 + b1X1i + · · ·+ bpXpi

I The residual “standard error” is the estimate for the standard

deviation of ε,i.e,

σ̂ = s =
√
s2.
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Example: Price/Sales Data

The data...

p1 p2 Sales

5.1356702 5.2041860 144.48788

3.4954600 8.0597324 637.24524

7.2753406 11.6759787 620.78693

4.6628156 8.3644209 549.00714

3.5845370 2.1502922 20.42542

5.1679168 10.1530371 713.00665

3.3840914 4.9465690 346.70679

4.2930636 7.7605691 595.77625

4.3690944 7.4288974 457.64694

7.2266002 10.7113247 591.45483

... ... ...
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Example: Price/Sales Data

Model: Salesi = β0 + β1P1i + β2P2i + εi , ε ∼ N(0, σ2)

fit = lm(Sales~p1+p2, data=price_sales)

print(fit)

##

## Call:

## lm(formula = Sales ~ p1 + p2, data = price_sales)

##

## Coefficients:

## (Intercept) p1 p2

## 115.72 -97.66 108.80

b0 = β̂0 = 115.72, b1 = β̂1 = −97.66, b2 = β̂2 = 108.80.

print(sigma(fit)) # sigma(fit) extracts s from an lm fit

## [1] 28.41801

s = σ̂ = 28.42 11



Prediction in MLR: Plug-in method

Suppose that by using advanced corporate espionage tactics, I

discover that my competitor will charge $10 the next quarter.

After some marketing analysis I decided to charge $8. How much

will I sell?

Our model is

Sales = β0 + β1P1 + β2P2 + ε

with ε ∼ N(0, σ2)

Our estimates are b0 = 115, b1 = −97, b2 = 109 and s = 28

which leads to

Sales = 115 +−97 ∗ P1 + 109 ∗ P2 + ε

with ε ∼ N(0, 282)
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Plug-in Prediction in MLR

By plugging-in the numbers,

Sales = 115.72 +−97.66 ∗ 8 + 108.8 ∗ 10 + ε

≈ 422 + ε

Sales|P1 = 8,P2 = 10 ∼ N(422.44, 282)

and the 95% Prediction Interval is (422± 2 ∗ 28)

366 < Sales < 478
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Better Prediction Intervals in R

new_data = data.frame(p1=8, p2=10)

predict(fit, newdata = new_data,

interval="prediction", level=0.95)

## fit lwr upr

## 1 422.4573 364.2966 480.6181

Pretty similar to (366,478), right?

Like in SLR, the difference gets larger the “farther” our new point

(here P1 = 8, P2 = 10) gets from the observed data
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Still be careful extrapolating!

In SLR “farther” is measured as distance from X̄ ; in MLR the idea

of extrapolation is a little more complicated.
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Blue: (P1=P̄1,P2 = P̄2), red: (P1=8, P2=10), purple: (P1=7.2,

P2=4). Red looks “consistent” with the data; purple not so much.15



Residuals in MLR

As in the SLR model, the residuals in multiple regression are

purged of any linear relationship to the independent variables.

Once again, they are on average zero.

Because the fitted values are an exact linear combination of the

X ’s they are not correlated with the residuals.

We decompose Y into the part predicted by X and the part due to

idiosyncratic error.

Y = Ŷ + e

ē = 0; corr(Xj , e) = 0; corr(Ŷ , e) = 0
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Residuals in MLR

Consider the residuals from the Sales data:
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Fitted Values in MLR
Another great plot for MLR problems is to look at

Y (true values) against Ŷ (fitted values).
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If things are working, these values should form a nice straight line. Can

you guess the slope of the blue line? 18



Fitted Values in MLR

Now, with P1 and P2...
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I First plot: Sales regressed on P1 alone...

I Second plot: Sales regressed on P2 alone...

I Third plot: Sales regressed on P1 and P2
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R-squared

I We still have our old variance decomposition identity...

SST = SSR + SSE

I ... and R2 is once again defined as

R2 =
SSR

SST
= 1− SSE

SST
= 1− var(e)

var(y)

telling us the percentage of variation in Y explained by the

X ’s. Again, R2 = corr(Y , Ŷ )2.

I In R, R2 is found in the same place...
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Back to Baseball

R/G = β0 + β1OBP + β2SLG + ε

both_fit = lm(RPG ~ OBP + SLG, data=baseball)

print(both_fit)

##

## Call:

## lm(formula = RPG ~ OBP + SLG, data = baseball)

##

## Coefficients:

## (Intercept) OBP SLG

## -7.014 27.593 6.031

21



Back to Baseball

summary(both_fit)

## ...

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -7.0143 0.8199 -8.555 3.61e-09 ***

## OBP 27.5929 4.0032 6.893 2.09e-07 ***

## SLG 6.0311 2.0215 2.983 0.00598 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.1486 on 27 degrees of freedom

## Multiple R-squared: 0.9134,Adjusted R-squared: 0.9069

## F-statistic: 142.3 on 2 and 27 DF, p-value: 4.563e-15

Remember, our highest R2 from SLR was 0.88 using OBP.
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Back to Baseball

R/G = β0 + β1OBP + β2SLG + ε

both_fit = lm(RPG ~ OBP + SLG, data=baseball); coef(both_fit)

## (Intercept) OBP SLG

## -7.014316 27.592869 6.031124

Compare to individual SLR models:

obp_fit = lm(RPG ~ OBP, data=baseball); coef(obp_fit)

## (Intercept) OBP

## -7.781631 37.459254

slg_fit = lm(RPG ~ SLG, data=baseball); coef(slg_fit)

## (Intercept) SLG

## -2.527758 17.541932
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Back to Baseball: Some questions

Why are the bj ’s smaller in the SLG+OBP model?

Remember, in MLR βj gives you the average change in Y for a 1

unit change in Xj given (i.e. holding constant) the other X’s

in the model.

Here, OBP is less informative once we know SLG, and vice-versa.

In general, coefficients can stay about the same, go up, go down

and even change sign as we add variables. (To be continued!)

Why did R2 go up? Does this mean we have a better model with

OBP+SLG? Not necessarily...
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