Section 2.2: Covariance, Correlation, and Least Squares

Jared S. Murray The University of Texas at Austin McCombs School of Business Suggested reading: OpenIntro Statistics, Chapter 7.1, 7.2

A Deeper Look at Least Squares Estimates

Last time we saw that least squares estimates had some special properties:

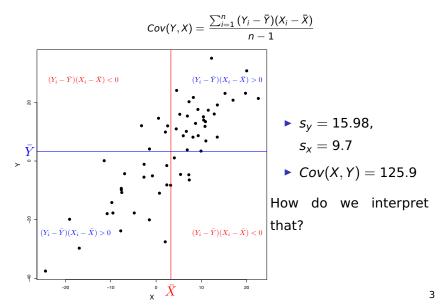
- The fitted values \hat{Y} and x were **very** dependent
- The residuals $Y \hat{Y}$ and x had no apparent relationship
- The residuals $Y \hat{Y}$ had a sample mean of zero

What's going on? And what exactly are the least squares estimates?

We need to review sample covariance and correlation

Covariance

Measure the *direction* and *strength* of the linear relationship between Y and X



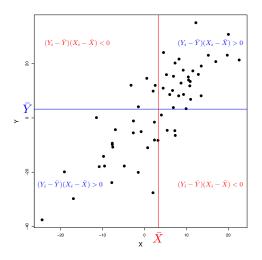
Correlation is the standardized covariance:

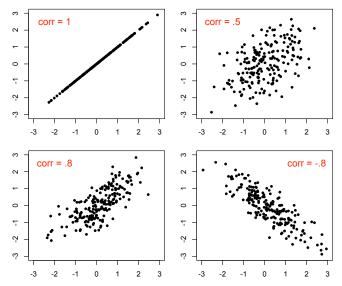
$$\operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sqrt{s_X^2 s_y^2}} = \frac{\operatorname{cov}(X,Y)}{s_X s_y}$$

The correlation is scale invariant and the units of measurement don't matter: It is always true that $-1 \le \operatorname{corr}(X, Y) \le 1$.

This gives the direction (- or +) and strength $(0 \rightarrow 1)$ of the linear relationship between X and Y.

$$corr(Y,X) = rac{cov(X,Y)}{\sqrt{s_x^2 s_y^2}} = rac{cov(X,Y)}{s_x s_y} = rac{125.9}{15.98 \times 9.7} = 0.812$$

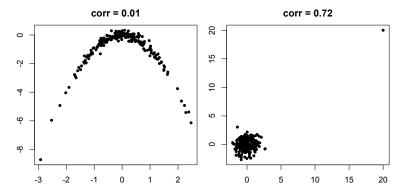




6

Only measures linear relationships:

corr(X, Y) = 0 does not mean the variables are not related!



Also be careful with influential observations...

The Least Squares Estimates

The values for b_0 and b_1 that minimize the least squares criterion are:

$$b_1 = r_{xy} \times \frac{s_y}{s_x}$$
 $b_0 = \bar{Y} - b_1 \bar{X}$

where,

- \overline{X} and \overline{Y} are the sample mean of X and Y
- $corr(x, y) = r_{xy}$ is the sample correlation
- s_x and s_y are the sample standard deviation of X and Y

These are the **least squares estimates** of β_0 and β_1 .

The Least Squares Estimates

The values for b_0 and b_1 that minimize the least squares criterion are:

$$b_1 = r_{xy} \times \frac{s_y}{s_x}$$
 $b_0 = \bar{Y} - b_1 \bar{X}$

How do we interpret these?

- b_0 ensures the line goes through (\bar{x}, \bar{y})
- b₁ scales the correlation to appropriate units by multiplying with s_y/s_x (what are the units of b₁?)

```
# Computing least squares estimates "by hand"
y = housingPrice; x = housingSize
rxy = cor(y, x)
sx = sd(x)
sy = sd(y)
ybar = mean(y)
xbar = mean(x)
b1 = rxy*sy/sx
b0 = ybar - b1 * xbar
print(b0); print(b1)
## [1] 38.88468
## [1] 35.38596
```

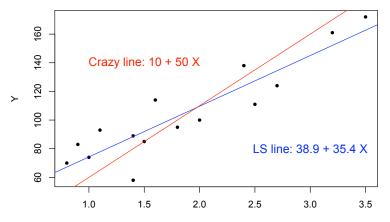
```
# We get the same result as lm()
fit = lm(Price~Size, data=housing)
print(fit)
##
## Call:
## lm(formula = Price ~ Size, data = housing)
##
## Coefficients:
## (Intercept)
                       Size
         38.88
                      35.39
##
```

Remember from the housing data, we had:

- $corr(\hat{Y}, x) = 1$ (a perfect linear relationship)
- corr(e,x) = 0 (no linear relationship)
- mean(e) = 0 (sample average of residuals is zero)

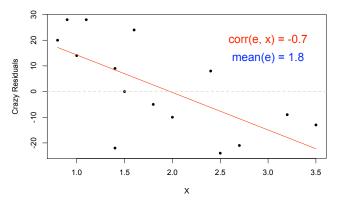
Why?

What is the intuition for the relationship between \hat{Y} and e and X? Lets consider some "crazy"alternative line:



Fitted Values and Residuals

This is a bad fit! We are underestimating the value of small houses and overestimating the value of big houses.



Clearly, we have left some predictive ability on the table!

Summary: LS is the best we can do!!

As long as the correlation between *e* and *X* is non-zero, we could always adjust our prediction rule to do better.

We need to exploit all of the predictive power in the X values and put this into \hat{Y} , leaving no "*Xness*" in the residuals.

In Summary: $Y = \hat{Y} + e$ where:

- \hat{Y} is "made from X"; corr(X, \hat{Y}) = ±1.
- e is unrelated to X; corr(X, e) = 0.
- On average, our prediction error is zero: $\bar{e} = \sum_{i=1}^{n} e_i = 0$.

Decomposing the Variance How well does the least squares line explain variation in Y? Remember that $Y = \hat{Y} + e$

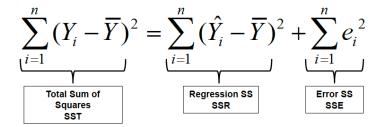
Since \hat{Y} and e are uncorrelated, i.e. $\operatorname{corr}(\hat{Y}, e) = 0$,

$$\begin{aligned} & \operatorname{var}(Y) = \operatorname{var}(\hat{Y} + e) = \operatorname{var}(\hat{Y}) + \operatorname{var}(e) \\ & \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}{n-1} = \frac{\sum_{i=1}^{n} (\hat{Y}_i - \bar{\hat{Y}})^2}{n-1} + \frac{\sum_{i=1}^{n} (e_i - \bar{e})^2}{n-1} \end{aligned}$$

Given that $\bar{e} = 0$, and the sample mean of the fitted values $\bar{\hat{Y}} = \bar{Y}$ (why?) we get to write:

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} e_i^2$$

Decomposing the Variance



SSR: Variation in Y explained by the regression line.

SSE: Variation in Y that is left unexplained.

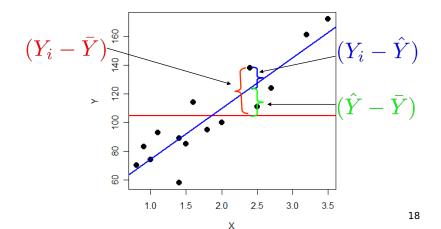
 $SSR = SST \Rightarrow perfect fit.$

Be careful of similar acronyms; e.g. SSR for "residual" SS.

Decomposing the Variance

$$(Y_i - \overline{Y}) = \hat{Y}_i + e_i - \overline{Y}$$

= $(\hat{Y}_i - \overline{Y}) + e_i$



The Coefficient of Determination R^2

The coefficient of determination, denoted by R^2 , measures how well the fitted values \hat{Y} follow Y:

$$R^2 = rac{\mathrm{SSR}}{\mathrm{SST}} = 1 - rac{\mathrm{SSE}}{\mathrm{SST}}$$

- R² is the proportion of variance in Y that is "explained" by the regression line (in the mathematical – not scientific – sense!): R² = 1 - Var(e)/Var(Y)
- ▶ $0 < R^2 < 1$
- ► For simple linear regression, $R^2 = r_{xy}^2$. Similar caveats to sample correlation apply!

R^2 for the Housing Data

```
summary(fit)
##
## Call:
## lm(formula = Price ~ Size, data = housing)
##
## Residuals:
##
      Min
          10 Median 30 Max
## -30.425 -8.618 0.575 10.766 18.498
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 38.885 9.094 4.276 0.000903 ***
## Size
           35.386 4.494 7.874 2.66e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.14 on 13 degrees of freedom
## Multiple R-squared: 0.8267, Adjusted R-squared: 0.8133
```

20

R^2 for the Housing Data

summary(fit) ## ## Call: ## lm(formula = Price ~ Size, data = housing) ## ## Residuals: ## Min 10 Median 30 Max ## -30,425 -8,618 0,575 10,766 18,498 ## ## Coefficients: Estimate Std. Error t value Pr(>|t|) ## ## (Intercept) 38.885 9.094 4.276 0.000903 *** ## Size 35.386 4.494 7.874 2.66e-06 *** ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 14.14 on 13 degrees of freedom ## Multiple R-squared: 0.8267, Adjusted R-squared: 0.8133

F-statistic: 62 on 1 and 13 DF, p-value: 2.66e-06

R^2 for the Housing Data

```
anova(fit)
## Analysis of Variance Table
##
## Response: Price
##
            Df Sum Sq Mean Sq F value Pr(>F)
## Size 1 12393.1 12393.1 61.998 2.66e-06 ***
## Residuals 13 2598.6 199.9
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0
```

$$R^2 = \frac{SSR}{SST} = \frac{12393.1}{2598.6 + 12393.1} = 0.8267$$

Three very similar, related ways to look at a simple linear regression... with only one *X* variable, life is easy!

	R ²	corr	SSE
OBP	0.88	0.94	0.79
SLG	0.76	0.87	1.64
AVG	0.63	0.79	2.49