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A Deeper Look at Least Squares Estimates

Last time we saw that least squares estimates had some

special properties:
» The fitted values ¥ and x were very dependent
» The residuals Y — Y and x had no apparent relationship

» The residuals Y — ¥ had a sample mean of zero

What's going on? And what exactly are the least squares

estimates?

We need to review sample covariance and correlation



Covariance

Measure the direction and strength of the linear relationship between Y and X
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Correlation

Correlation is the standardized covariance:
cov(X,Y)  cov(X,Y)
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The correlation is scale invariant and the units of

corr(X,Y) =

measurement don’t matter: It is always true that
—1 < corr(X,Y) < 1.

This gives the direction (- or +) and strength (0 — 1)
of the linear relationship between X and Y.
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Correlation
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Correlation

Only measures linear relationships:
corr(X,Y) = 0 does not mean the variables are not related!
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Also be careful with influential observations...



The Least Squares Estimates

The values for bg and b1 that minimize the least squares
criterion are:
S _ _
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where,

» X and Y are the sample mean of X and Y
» corr(x,y) = rxy is the sample correlation

» sy and s, are the sample standard deviation of X and Y

These are the least squares estimates of 5y and ;.



The Least Squares Estimates

The values for bg and b1 that minimize the least squares
criterion are:
S — —
Sx
How do we interpret these?

» bg ensures the line goes through (X, y)

» bi scales the correlation to appropriate units by
multiplying with s, /s, (what are the units of b;?)



# Computing least squares estimates "by hand"
y = housing$Price; x = housing$Size

rxy = cor(y, x)

SX sd(x)

sy = sd(y)

ybar = mean(y)

xbar = mean(x)
bl
b0 = ybar - blxxbar
print(b0); print(bl)

rxy*sy/sx

## [1] 38.88468
## [1] 35.38596
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# We get the same result as lm()
fit = Um(Price~Size, data=housing)
print(fit)

##t

## Call:

## Im(formula = Price ~ Size, data = housing)
#i#

## Coefficients:

## (Intercept) Size

##t 38.88 35.39



Properties of Least Squares Estimates

Remember from the housing data, we had:

» corr(Y,x) = 1 (a perfect linear relationship)
» corr(e,x) = 0 (no linear relationship)

» mean(e) = 0 (sample average of residuals is zero)
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Why?

What is the intuition for the relationship between Y and e and
X? Lets consider some “crazy”alternative line:
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Fitted Values and Residuals

This is a bad fit! We are underestimating the value of small

houses and overestimating the value of big houses.
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Clearly, we have left some predictive ability on the table!



Summary: LS is the best we can do!!

As long as the correlation between e and X is non-zero, we
could always adjust our prediction rule to do better.

We need to exploit all of the predictive power in the X values
and put this into Y, leaving no “Xness” in the residuals.

In Summary: Y = Y + e where:
» Y is “made from X"; corr(X,Y) = +1.
» e is unrelated to X; corr(X,e) = 0.

» On average, our prediction error is zero: & = > " ; e; = 0.
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Decomposing the Variance
How well does the least squares line explain variation in Y?

RememberthatY =Y + e

Since Y and e are uncorrelated, i.e. corr(Y,e) = 0,

var(Y) = var(Y +e)=var(Y) + var(e)
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Given that e = 0, and the sample mean of the fitted values
Y = Y (why?) we get to write:
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Decomposing the Variance

Zn:()j—f) Z(Y Y) +Ze
U=t Y A v U=ty

Total Sum of Regression SS Error SS
Squares SSR SSE
SST

SSR: Variation in Y explained by the regression line.
SSE: Variation in Y that is left unexplained.

SSR = SST = perfect fit.

Be careful of similar acronyms; e.qg. SSR for “residual” SS.
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Decomposing the Variance
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The Coefficient of Determination R?

The coefficient of determination, denoted by R?,

measures how well the fitted values Y follow Y:

SSR SSE
RR=——=1-——
SST SST

» RZ? is the proportion of variance in Y that is “explained” by
the regression line (in the mathematical — not scientific -
sense!): R? = 1 — Var(e)/Var(Y)

» 0<R?><1

» For simple linear regression, R? = rfy. Similar caveats to

sample correlation apply!
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R? for the Housing Data

summary (fit)

##
## Call:

## Im(formula = Price ~ Size, data = housing)

##
## Residuals:

## Min 1Q Median 3Q

## -30.425 -8.618 0.575 10.766 18.498

##
## Coefficients:

## Estimate Std. Error t value

## (Intercept) 38.885 9.094
## Size 35.386 4.494
## o---

## Signif. codes: 0 's*xx' 0.001 '*x'
#it

Pr(>|t|)
0.000903 *x*x*
2.66€-06 *x*x*

!

0.05 '.

‘0.1

## Residual standard error: 14.14 on 13 degrees of freedom

## Multiple R-squared: 0.8267,Adjusted R-squared:

0.8133
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R? for the Housing Data

summary (fit)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:

Im(formula = Price ~ Size, data = housing)

Residuals:
Min 1Q Median 30 Max
-30.425 -8.618 0.575 10.766 18.498

Coefficients:

Estimate Std. Error t value
(Intercept) 38.885 9.094 4.276
Size 35.386 4.494 7.874

Signif. codes: 0 'sx¥x' 0.001 'sx' 0.01

Pr(>|t|)
0.000903 *x*x*
2.66e-06 *x*x*

*

0.05 '.

'e.1"

Residual standard error: 14.14 on 13 degrees of freedom
Multiple R-squared: 0.8267, Adjusted R-squared:

F-statistic:

0.8133
62 on 1 and 13 DF, p-value: 2.66e-06
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R? for the Housing Data

anova(fit)

## Analysis of Variance Table

##

## Response: Price

## Df Sum Sq Mean Sq F value Pr(>F)

## Size 1 12393.1 12393.1 61.998 2.66e-06 *x**

## Residuals 13 2598.6 199.9

#H o---

## Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' C

_SSR 12393.1

R? =
SST ~ 2598.6 + 12393.1

= 0.8267
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Back to Baseball

Three very similar, related ways to look at a simple linear
regression... with only one X variable, life is easy!

R? | corr | SSE
OBP | 0.88 | 0.94 | 0.79
SLG | 0.76 | 0.87 | 1.64
AVG | 0.63 | 0.79 | 2.49




