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A Deeper Look at Least Squares Estimates

Last time we saw that least squares estimates had some

special properties:

I The fitted values Ŷ and x were very dependent

I The residuals Y − Ŷ and x had no apparent relationship

I The residuals Y − Ŷ had a sample mean of zero

What’s going on? And what exactly are the least squares

estimates?

We need to review sample covariance and correlation
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Covariance
Measure the direction and strength of the linear relationship between Y and X

Cov(Y,X) =

∑n
i=1 (Yi − Ȳ)(Xi − X̄)
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I sy = 15.98,

sx = 9.7

I Cov(X, Y) = 125.9

How do we interpret

that?
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Correlation

Correlation is the standardized covariance:

corr(X, Y) =
cov(X, Y)√

s2
xs

2
y

=
cov(X, Y)

sxsy

The correlation is scale invariant and the units of

measurement don’t matter: It is always true that

−1 ≤ corr(X, Y) ≤ 1.

This gives the direction (- or +) and strength (0→ 1)

of the linear relationship between X and Y.
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Correlation

corr(Y,X) =
cov(X, Y)√

s2
xs

2
y

=
cov(X, Y)

sxsy
=

125.9

15.98× 9.7
= 0.812

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

−20 −10 0 10 20

−4
0

−2
0

0
20

X

Y
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Correlation
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Correlation

Only measures linear relationships:

corr(X, Y) = 0 does not mean the variables are not related!
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Also be careful with influential observations...
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The Least Squares Estimates

The values for b0 and b1 that minimize the least squares

criterion are:

b1 = rxy ×
sy
sx

b0 = Ȳ − b1X̄

where,

I X̄ and Ȳ are the sample mean of X and Y

I corr(x, y) = rxy is the sample correlation

I sx and sy are the sample standard deviation of X and Y

These are the least squares estimates of β0 and β1.
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The Least Squares Estimates

The values for b0 and b1 that minimize the least squares

criterion are:

b1 = rxy ×
sy
sx

b0 = Ȳ − b1X̄

How do we interpret these?

I b0 ensures the line goes through (x̄, ȳ)

I b1 scales the correlation to appropriate units by

multiplying with sy/sx (what are the units of b1?)
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# Computing least squares estimates "by hand"

y = housing$Price; x = housing$Size

rxy = cor(y, x)

sx = sd(x)

sy = sd(y)

ybar = mean(y)

xbar = mean(x)

b1 = rxy*sy/sx

b0 = ybar - b1*xbar

print(b0); print(b1)

## [1] 38.88468

## [1] 35.38596
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# We get the same result as lm()

fit = lm(Price~Size, data=housing)

print(fit)

##

## Call:

## lm(formula = Price ~ Size, data = housing)

##

## Coefficients:

## (Intercept) Size

## 38.88 35.39
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Properties of Least Squares Estimates

Remember from the housing data, we had:

I corr(Ŷ, x) = 1 (a perfect linear relationship)

I corr(e, x) = 0 (no linear relationship)

I mean(e) = 0 (sample average of residuals is zero)
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Why?

What is the intuition for the relationship between Ŷ and e and

X? Lets consider some “crazy”alternative line:
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LS line: 38.9 + 35.4 X

Crazy line: 10 + 50 X
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Fitted Values and Residuals

This is a bad fit! We are underestimating the value of small

houses and overestimating the value of big houses.
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corr(e, x) = -0.7
mean(e) = 1.8

Clearly, we have left some predictive ability on the table!
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Summary: LS is the best we can do!!

As long as the correlation between e and X is non-zero, we

could always adjust our prediction rule to do better.

We need to exploit all of the predictive power in the X values

and put this into Ŷ, leaving no “Xness” in the residuals.

In Summary: Y = Ŷ + e where:

I Ŷ is “made from X”; corr(X, Ŷ) = ±1.

I e is unrelated to X; corr(X, e) = 0.

I On average, our prediction error is zero: ē =
∑n

i=1 ei = 0.
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Decomposing the Variance
How well does the least squares line explain variation in Y?

Remember that Y = Ŷ + e

Since Ŷ and e are uncorrelated, i.e. corr(Ŷ, e) = 0,

var(Y) = var(Ŷ + e) = var(Ŷ) + var(e)∑n
i=1(Yi − Ȳ)2

n− 1
=

∑n
i=1(Ŷi − ¯̂Y)2

n− 1
+

∑n
i=1(ei − ē)2

n− 1

Given that ē = 0, and the sample mean of the fitted values
¯̂Y = Ȳ (why?) we get to write:

n∑
i=1

(Yi − Ȳ)2 =
n∑
i=1

(Ŷi − Ȳ)2 +
n∑
i=1

e2
i
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Decomposing the Variance

SSR: Variation in Y explained by the regression line.

SSE: Variation in Y that is left unexplained.

SSR = SST⇒ perfect fit.

Be careful of similar acronyms; e.g. SSR for “residual” SS.
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Decomposing the Variance

(Yi−Ȳ) = Ŷi + ei−Ȳ
= (Ŷi − Ȳ) + ei

Week II. Slide 23
Applied Regression Analysis – Fall 2008 
Matt Taddy

Decomposing the Variance – The ANOVA Table
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The Coefficient of Determination R2

The coefficient of determination, denoted by R2,

measures how well the fitted values Ŷ follow Y:

R2 =
SSR

SST
= 1− SSE

SST

I R2 is the proportion of variance in Y that is “explained” by

the regression line (in the mathematical – not scientific –

sense!): R2 = 1− Var(e)/Var(Y)

I 0 < R2 < 1

I For simple linear regression, R2 = r2
xy. Similar caveats to

sample correlation apply!
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R2 for the Housing Data

summary(fit)

##

## Call:

## lm(formula = Price ~ Size, data = housing)

##

## Residuals:

## Min 1Q Median 3Q Max

## -30.425 -8.618 0.575 10.766 18.498

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 38.885 9.094 4.276 0.000903 ***
## Size 35.386 4.494 7.874 2.66e-06 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 14.14 on 13 degrees of freedom

## Multiple R-squared: 0.8267,Adjusted R-squared: 0.8133

## F-statistic: 62 on 1 and 13 DF, p-value: 2.66e-06
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R2 for the Housing Data

anova(fit)

## Analysis of Variance Table

##

## Response: Price

## Df Sum Sq Mean Sq F value Pr(>F)

## Size 1 12393.1 12393.1 61.998 2.66e-06 ***

## Residuals 13 2598.6 199.9

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R2 =
SSR

SST
=

12393.1

2598.6 + 12393.1
= 0.8267
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Back to Baseball

Three very similar, related ways to look at a simple linear

regression... with only one X variable, life is easy!

R2 corr SSE

OBP 0.88 0.94 0.79

SLG 0.76 0.87 1.64

AVG 0.63 0.79 2.49
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