# Section 2.2: Covariance, Correlation, and Least Squares 

Jared S. Murray<br>The University of Texas at Austin<br>McCombs School of Business<br>Suggested reading: OpenIntro Statistics, Chapter 7.1, 7.2

## A Deeper Look at Least Squares Estimates

Last time we saw that least squares estimates had some special properties:

- The fitted values $\hat{Y}$ and $x$ were very dependent
- The residuals $Y-\hat{Y}$ and $x$ had no apparent relationship
- The residuals $Y-\hat{Y}$ had a sample mean of zero

What's going on? And what exactly are the least squares estimates?

We need to review sample covariance and correlation

## Covariance

Measure the direction and strength of the linear relationship between $Y$ and $X$

$$
\operatorname{Cov}(Y, X)=\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)\left(X_{i}-\bar{X}\right)}{n-1}
$$



- $S_{y}=15.98$,

$$
s_{X}=9.7
$$

- $\operatorname{Cov}(X, Y)=125.9$

How do we interpret that?

## Correlation

Correlation is the standardized covariance:

$$
\operatorname{corr}(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{s_{x}^{2} s_{y}^{2}}}=\frac{\operatorname{cov}(X, Y)}{s_{x} s_{y}}
$$

The correlation is scale invariant and the units of measurement don't matter: It is always true that
$-1 \leq \operatorname{corr}(X, Y) \leq 1$.

This gives the direction (- or + ) and strength ( $0 \rightarrow 1$ ) of the linear relationship between $X$ and $Y$.

## Correlation

$$
\operatorname{corr}(Y, X)=\frac{\operatorname{cov}(X, Y)}{\sqrt{s_{x}^{2} s_{y}^{2}}}=\frac{\operatorname{cov}(X, Y)}{s_{x} s_{y}}=\frac{125.9}{15.98 \times 9.7}=0.812
$$



## Correlation






## Correlation

Only measures linear relationships:
$\operatorname{corr}(X, Y)=0$ does not mean the variables are not related!



Also be careful with influential observations...

## The Least Squares Estimates

The values for $b_{0}$ and $b_{1}$ that minimize the least squares criterion are:

$$
b_{1}=r_{x y} \times \frac{s_{y}}{s_{x}} \quad b_{0}=\bar{Y}-b_{1} \bar{X}
$$

where,

- $\bar{X}$ and $\bar{Y}$ are the sample mean of $X$ and $Y$
- $\operatorname{corr}(x, y)=r_{x y}$ is the sample correlation
- $s_{X}$ and $s_{y}$ are the sample standard deviation of $X$ and $Y$

These are the least squares estimates of $\beta_{0}$ and $\beta_{1}$.

## The Least Squares Estimates

The values for $b_{0}$ and $b_{1}$ that minimize the least squares criterion are:

$$
b_{1}=r_{x y} \times \frac{s_{y}}{s_{x}} \quad b_{0}=\bar{Y}-b_{1} \bar{X}
$$

How do we interpret these?

- $b_{0}$ ensures the line goes through $(\bar{x}, \bar{y})$
- $b_{1}$ scales the correlation to appropriate units by multiplying with $s_{y} / s_{x}$ (what are the units of $b_{1}$ ?)

```
# Computing least squares estimates "by hand"
y = housing$Price; x = housing$Size
rxy = cor(y, x)
sx = sd(x)
sy = sd(y)
ybar = mean(y)
xbar = mean(x)
b1 = rxy*sy/sx
b0 = ybar - b1*xbar
print(b0); print(b1)
\#\# [1] 38.88468
\#\# [1] 35.38596
```

```
# We get the same result as lm()
fit = lm(Price~Size, data=housing)
print(fit)
##
## Call:
## lm(formula = Price ~ Size, data = housing)
##
## Coefficients:
\begin{tabular}{lrr} 
\#\# & (Intercept) & Size \\
\#\# & 38.88 & 35.39
\end{tabular}
```


## Properties of Least Squares Estimates

Remember from the housing data, we had:

- $\operatorname{corr}(\hat{Y}, x)=1$ (a perfect linear relationship)
- $\operatorname{corr}(e, x)=0$ (no linear relationship)
- mean $(e)=0$ (sample average of residuals is zero)


## Why?

What is the intuition for the relationship between $\hat{Y}$ and $e$ and $X$ ? Lets consider some "crazy" alternative line:


## Fitted Values and Residuals

This is a bad fit! We are underestimating the value of small houses and overestimating the value of big houses.


Clearly, we have left some predictive ability on the table!

## Summary: LS is the best we can do!!

As long as the correlation between $e$ and $X$ is non-zero, we could always adjust our prediction rule to do better.

We need to exploit all of the predictive power in the $X$ values and put this into $\hat{Y}$, leaving no "Xness" in the residuals.

In Summary: $Y=\hat{Y}+e$ where:

- $\hat{Y}$ is "made from $X$ "; $\operatorname{corr}(X, \hat{Y})= \pm 1$.
- $e$ is unrelated to $X ; \operatorname{corr}(X, e)=0$.
- On average, our prediction error is zero: $\bar{e}=\sum_{i=1}^{n} e_{i}=0$.


## Decomposing the Variance

How well does the least squares line explain variation in $Y$ ?
Remember that $Y=\hat{Y}+e$

Since $\hat{Y}$ and $e$ are uncorrelated, i.e. $\operatorname{corr}(\hat{Y}, e)=0$,

$$
\begin{aligned}
\operatorname{var}(Y) & =\operatorname{var}(\hat{Y}+e)=\operatorname{var}(\hat{Y})+\operatorname{var}(e) \\
\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}{n-1} & =\frac{\sum_{i=1}^{n}\left(\hat{Y}_{i}-\overline{\hat{Y}}\right)^{2}}{n-1}+\frac{\sum_{i=1}^{n}\left(e_{i}-\bar{e}\right)^{2}}{n-1}
\end{aligned}
$$

Given that $\bar{e}=0$, and the sample mean of the fitted values $\overline{\hat{Y}}=\bar{Y}$ (why?) we get to write:

$$
\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}+\sum_{i=1}^{n} e_{i}^{2}
$$

## Decomposing the Variance



SSR: Variation in $Y$ explained by the regression line.
SSE: Variation in $Y$ that is left unexplained.

SSR $=$ SST $\Rightarrow$ perfect fit.

Be careful of similar acronyms; e.g. SSR for "residual" SS.

## Decomposing the Variance

$$
\begin{aligned}
\left(Y_{i}-\bar{Y}\right) & =\hat{Y}_{i}+e_{i}-\bar{Y} \\
& =\left(\hat{Y}_{i}-\bar{Y}\right)+e_{i}
\end{aligned}
$$



## The Coefficient of Determination $R^{2}$

The coefficient of determination, denoted by $R^{2}$, measures how well the fitted values $\hat{Y}$ follow $Y$ :

$$
R^{2}=\frac{\mathrm{SSR}}{\mathrm{SST}}=1-\frac{\mathrm{SSE}}{\mathrm{SST}}
$$

- $R^{2}$ is the proportion of variance in $Y$ that is "explained" by the regression line (in the mathematical - not scientific sense!): $R^{2}=1-\operatorname{Var}(e) / \operatorname{Var}(Y)$
- $0<R^{2}<1$
- For simple linear regression, $R^{2}=r_{x y}^{2}$. Similar caveats to sample correlation apply!


## $R^{2}$ for the Housing Data

```
summary(fit)
##
## Call:
## lm(formula = Price ~ Size, data = housing)
##
## Residuals:
\begin{tabular}{rrrrrr} 
\#\# & Min & \(1 Q\) & Median & 3Q & Max \\
\#\# & -30.425 & -8.618 & 0.575 & 10.766 & 18.498
\end{tabular}
##
## Coefficients:
\begin{tabular}{lrrrrr} 
\#\# & Estimate Std. Error t value \(\operatorname{Pr}(>\mid \mathrm{t\mid})\) \\
\#\# (Intercept) & 38.885 & 9.094 & 4.276 & 0.000903 *** \\
\#\# Size & 35.386 & 4.494 & 7.874 & \(2.66 e-06\) ***
\end{tabular}
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.14 on 13 degrees of freedom
## Multiple R-squared: 0.8267,Adjusted R-squared: 0.8133
```


## $R^{2}$ for the Housing Data

```
summary(fit)
##
## Call:
## lm(formula = Price ~ Size, data = housing)
##
## Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & \(1 Q\) & Median & 3Q & Max \\
\#\# & -30.425 & -8.618 & 0.575 & 10.766 & 18.498
\end{tabular}
##
## Coefficients:
\begin{tabular}{lrrrl} 
\#\# & Estimate Std. Error t value \(\operatorname{Pr}(>\mid \mathrm{t\mid})\) \\
\#\# (Intercept) & 38.885 & 9.094 & 4.276 & 0.000903 *** \\
\#\# Size & 35.386 & 4.494 & 7.874 & \(2.66 e-06\) ***
\end{tabular}
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.14 on 13 degrees of freedom
## Multiple R-squared: 0.8267, Adjusted R-squared: 0.8133
## F-statistic: }62\mathrm{ on 1 and 13 DF, p-value: 2.66e-06
```


## $R^{2}$ for the Housing Data

## anova(fit)

\#\# Analysis of Variance Table
\#\#
\#\# Response: Price

| \#\# | Df | Sum Sq Mean Sq F value | $\operatorname{Pr}(>F)$ |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| \#\# Size | 1 | 12393.1 | 12393.1 | 61.998 | $2.66 e-06 * * *$ |
| \#\# Residuals | 13 | 2598.6 | 199.9 |  |  |

\#\# -- -
\#\# Signif. codes: $0{ }^{\prime} * * * ' 0.001{ }^{\prime} * * ' 0.01 *^{\prime} *^{\prime} 0.05{ }^{\prime} . '$

$$
R^{2}=\frac{S S R}{S S T}=\frac{12393.1}{2598.6+12393.1}=0.8267
$$

## Back to Baseball

Three very similar, related ways to look at a simple linear regression... with only one $X$ variable, life is easy!

|  | $R^{2}$ | corr | SSE |
| :---: | :---: | :---: | :---: |
| OBP | 0.88 | 0.94 | 0.79 |
| SLG | 0.76 | 0.87 | 1.64 |
| AVG | 0.63 | 0.79 | 2.49 |

