
Section 1.3: More Probability and Decisions: Linear
Combinations and Continuous Random Variables

Jared S. Murray
The University of Texas at Austin

McCombs School of Business
OpenIntro Statistics, Chapters 2.4.2, 2.4.3, and 3.1-3.2

1



Introduction

We’ve seen how the expected value (our best prediction) and

variance/standard deviation (how risky our best prediction is)

help us think about uncertainty and make decisions in simple

scenarios

We need some more tools for thinking about

1. Multiple random variables (sources of uncertainty)

2. Other kinds of random variables - continuous outcomes
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Covariance

I A measure of dependence between two random variables...

I It tells us how two unknown quantities tend to move together:

Positive → One goes up (down), the other tends to go up

(down). Negative → One goes down (up), the other tends to

go up (down).

I If X and Y are independent, Cov(X ,Y ) = 0 BUT

Cov(X ,Y ) = 0 does not mean X and Y are independent

(more on this later).

The Covariance is defined as (for discrete X and Y ):

Cov(X ,Y ) =
n∑

i=1

m∑
j=1

Pr(xi , yj)× [xi − E (X )]× [yj − E (Y )]

I What are the units of Cov(X ,Y ) ?
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Ford vs. Tesla

I Assume a very simple joint distribution of monthly returns for

Ford (F ) and Tesla (T ):

t=-7% t=0% t=7% Pr(F=f)

f=-4% 0.06 0.07 0.02 0.15

f=0% 0.03 0.62 0.02 0.67

f=4% 0.00 0.11 0.07 0.18

Pr(T=t) 0.09 0.80 0.11 1

Let’s summarize this table with some numbers...
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Example: Ford vs. Tesla

t=-7% t=0% t=7% Pr(F=f)

f=-4% 0.06 0.07 0.02 0.15

f=0% 0.03 0.62 0.02 0.67

f=4% 0.00 0.11 0.07 0.18

Pr(T=t) 0.09 0.80 0.11 1

I E (F ) = 0.12, E (T ) = 0.14

I Var(F ) = 5.25, sd(F ) = 2.29, Var(T ) = 9.76, sd(T ) = 3.12

I What is the better stock?
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Example: Ford vs. Tesla

t=-7% t=0% t=7% Pr(F=f)

f=-4% 0.06 0.07 0.02 0.15

f=0% 0.03 0.62 0.02 0.67

f=4% 0.00 0.11 0.07 0.18

Pr(T=t) 0.09 0.80 0.11 1

Cov(F ,T ) =(−7− 0.14)(−4− 0.12)0.06 + (−7− 0.14)(0− 0.12)0.03+

(−7− 0.14)(4− 0.12)0.00+(0− 0.14)(−4− 0.12)0.07+

(0− 0.14)(0− 0.12)0.62 + (0− 0.14)(4− 0.12)0.11+

(7− 0.14)(−4− 0.12)0.02 + (7− 0.14)(0− 0.12)0.02+

(7− 0.14)(4− 0.12)0.07 = 3.063

Okay, the covariance in positive... makes sense, but can we get a

more intuitive number? 6



Correlation

Corr(X ,Y ) =
Cov(X ,Y )

sd(X )sd(Y )

I What are the units of Corr(X ,Y )? It doesn’t depend on the

units of X or Y !

I −1 ≤ Corr(X ,Y ) ≤ 1

In our Ford vs. Tesla example:

Corr(F ,T ) =
3.063

2.29× 3.12
= 0.428 (not too strong!)
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Linear Combination of Random Variables

Is it better to hold Ford or Tesla? How about half and half?

To answer this question we need to understand the behavior of the

weighted sum (linear combinations) of two random variables...

Let X and Y be two random variables:

I E (aX + bY + c) = aE (X ) + bE (Y ) + c

I Var(aX +bY +c) = a2Var(X )+b2Var(Y )+2ab×Cov(X ,Y )
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Linear Combination of Random Variables

Applying this to the Ford vs. Tesla example...

I E (0.5F + 0.5T ) = 0.5E (F ) + 0.5E (T ) =

0.5× 0.12 + 0.5× 0.14 = 0.13

I Var(0.5F + 0.5T ) =

(0.5)2Var(F ) + (0.5)2Var(T ) + 2(0.5)(0.5)× Cov(F ,T ) =

(0.5)2(5.25) + (0.5)2(9.76) + 2(0.5)(0.5)× 3.063 = 5.28

I sd(0.5F + 0.5T ) = 2.297

so, what is better? Holding Ford, Tesla or the combination?
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Risk Adjustment: Sharpe Ratio

The Sharpe ratio is a unitless quantity used to compare

investments:

(average return) - (return on a risk-free investment)

standard deviation of returns

Idea: Standardize the average excess return by the amount of risk.

(“Risk adjusted returns”)

Ignoring the risk-free investment, what are the Sharpe ratios for

Ford, Tesla, and the 50-50 portfolio?
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Linear Combination of Random Variables

More generally...

I E (w1X1 + w2X2 + ...wpXp + c) =

w1E (X1) +w2E (X2) + ...+wpE (Xp) + c =
∑p

i=1 wiE (Xi ) + c

I Var(w1X1 +w2X2 + ...wpXp +c) = w2
1Var(X1) +w2

2Var(X2) +

...+w2
pVar(Xp)+2w1w2×Cov(X1,X2)+2w1w3Cov(X1,X3)+

... =
∑p

i=1 w
2
i Var(Xi ) +

∑p
i=1

∑
j 6=i wiwjCov(Xi ,Xj)

where w1,w2, . . . ,wp and c are constants
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Continuous Random Variables

I Suppose we are trying to predict tomorrow’s return on the

S&P500 (Or on a real Ford/Tesla portfolio)...

I Question: What is the random variable of interest? What are

its possible outcomes? Could you list them?

I Question: How can we describe our uncertainty about

tomorrow’s outcome?
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Continuous Random Variables

I Recall: a random variable is a number about which we’re

uncertain, but can describe the possible outcomes.

I Listing all possible values isn’t possible for continuous random

variables, we have to use intervals.

I The probability the r.v. falls in an interval is given by the area

under the probability density function. For a continuous

r.v., the probability assigned to any single value is zero!
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The Normal Distribution

I The Normal distribution is the most used probability

distribution to describe a continuous random variable. Its

probability density function (pdf) is symmetric and

bell-shaped.

I The probability the number ends up in an interval is given by

the area under the pdf.
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The Normal Distribution

I The standard Normal distribution has mean 0 and has

variance 1.

I Notation: If Z ∼ N(0, 1) (Z is the random variable)

Pr(−1 < Z < 1) = 0.68

Pr(−1.96 < Z < 1.96) = 0.95
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The Normal Distribution

Note:

For simplicity we will often use P(−2 < Z < 2) ≈ 0.95

Questions:

I What is Pr(Z < 2) ? How about Pr(Z ≤ 2)?

I What is Pr(Z < 0)?
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The Normal Distribution

I The standard normal is not that useful by itself. When we say

“the normal distribution”, we really mean a family of

distributions.

I We obtain pdfs in the normal family by shifting the bell curve

around and spreading it out (or tightening it up).
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The Normal Distribution

I We write X ∼ N(µ, σ2). “X has a Normal distribution with

mean µ and variance σ2.

I The parameter µ determines where the curve is. The center of

the curve is µ.

I The parameter σ determines how spread out the curve is. The

area under the curve in the interval (µ− 2σ, µ+ 2σ) is 95%.

Pr(µ− 2σ < X < µ+ 2σ) ≈ 0.95

x

µµ µµ ++ σσ µµ ++ 2σσµµ −− σσµµ −− 2σσ 18



Recall: Mean and Variance of a Random Variable

I For the normal family of distributions we can see that the

parameter µ determines “where” the distribution is located or

centered.

I The expected value µ is usually our best guess for a prediction.

I The parameter σ (the standard deviation) indicates how

spread out the distribution is. This gives us and indication

about how uncertain or how risky our prediction is.
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The Normal Distribution

I Example: Below are the pdfs of X1 ∼ N(0, 1), X2 ∼ N(3, 1),

and X3 ∼ N(0, 16).

I Which pdf goes with which X?

−8 −6 −4 −2 0 2 4 6 8 20



The Normal Distribution – Example

I Assume the annual returns on the SP500 are normally

distributed with mean 6% and standard deviation 15%.

SP500 ∼ N(6, 225). (Notice: 152 = 225).

I Two questions: (i) What is the chance of losing money in a

given year? (ii) What is the value such that there’s only a 2%

chance of losing that or more?

I Lloyd Blankfein: “I spend 98% of my time thinking about .02

probability events!”

I (i) Pr(SP500 < 0) and (ii) Pr(SP500 <?) = 0.02
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The Normal Distribution – Example
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I (i) Pr(SP500 < 0) = 0.35 and (ii) Pr(SP500 < −25) = 0.02
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The Normal Distribution in R

In R, calculations with the normal distribution are easy!

(Remember to use SD, not Var)

To compute Pr(SP500 < 0) = ?:

pnorm(0, mean = 6, sd = 15)

## [1] 0.3445783

To solve Pr(SP500 < ?) = 0.02:

qnorm(0.02, mean = 6, sd = 15)

## [1] -24.80623
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The Normal Distribution

1. Note: In

X ∼ N(µ, σ2)

µ is the mean and σ2 is the variance.

2. Standardization: if X ∼ N(µ, σ2) then

Z =
X − µ
σ

∼ N(0, 1)

3. Summary:

X ∼ N(µ, σ2):

µ: where the curve is

σ: how spread out the curve is

95% chance X ∈ µ± 2σ.
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The Normal Distribution – Another Example

Prior to the 1987 crash, monthly S&P500 returns (r) followed

(approximately) a normal with mean 0.012 and standard deviation

equal to 0.043. How extreme was the crash of -0.2176? The

standardization helps us interpret these numbers...

r ∼ N(0.012, 0.0432)

z =
r − 0.012

0.043
∼ N(0, 1)

For the crash,

z =
−0.2176− 0.012

0.043
= −5.27

How extreme is this zvalue? 5 standard deviations away!! 25



Portfolios, once again...

I As before, let’s assume that the annual returns on the SP500

are normally distributed with mean 6% and standard deviation

of 15%, i.e., SP500 ∼ N(6, 152)

I Let’s also assume that annual returns on bonds are normally

distributed with mean 2% and standard deviation 5%, i.e.,

Bonds ∼ N(2, 52)

I What is the best investment?

I What else do I need to know if I want to consider a portfolio

of SP500 and bonds?
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Portfolios once again...

I Additionally, let’s assume the correlation between the returns

on SP500 and the returns on bonds is -0.2.

I How does this information impact our evaluation of the best

available investment?

Recall that for two random variables X and Y :

I E (aX + bY ) = aE (X ) + bE (Y )

I Var(aX + bY ) = a2Var(X ) + b2Var(Y ) + 2ab × Cov(X ,Y )

I One more very useful property... sum of normal random

variables is a new normal random variable!
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Portfolios once again...

I What is the behavior of the returns of a portfolio with 70% in

the SP500 and 30% in Bonds?

I E (0.7SP500 + 0.3Bonds) = 0.7E (SP500) + 0.3E (Bonds) =

0.7× 6 + 0.3× 2 = 4.8

I Var(0.7SP500 + 0.3Bonds) =

(0.7)2Var(SP500) + (0.3)2Var(Bonds) + 2(0.7)(0.3)×
Corr(SP500,Bonds)× sd(SP500)× sd(Bonds) =

(0.7)2(152) + (0.3)2(52) + 2(0.7)(0.3)×−0.2×15×5 = 106.2

I Portfolio ∼ N(4.8, 10.32)

I What do you think about this portfolio? Is there a better set

of weights?
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Simulating Normal Random Variables

I Imagine you invest $1 in the SP500 today and want to know

how much money you are going to have in 20 years. We can

assume, once again, that the returns on the SP500 on a given

year follow N(6, 152)

I Let’s also assume returns are independent year after year...

I Are my total returns just the sum of returns over 20 years?

Not quite... compounding gets in the way.

Let’s simulate potential “futures”
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Simulating one normal r.v.

At the end of the first year I have $(1× (1 + pct return/100)).

val = 1 + rnorm(1, 6, 15)/100

print(val)

## [1] 0.9660319

rnorm(n, mu, sigma) draws n samples from a normal

distribution with mean µ and standard deviation σ.

30



Simulating compounding

We reinvest our earnings in year 2, and every year after that:

for(year in 2:20) {
val = val*(1 + rnorm(1, 6, 15)/100)

}
print(val)

## [1] 4.631522
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Simulating a few more “futures”

We did pretty well - our $1 has grown to $4.63, but is that typical?

Let’s do a few more simulations:
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More efficient simulations

Let’s simulate 10,000 futures under this model. Recall the value of

my investment at time T is

T∏
t=1

(1 + rt/100)

where rt is the percent return in year t

library(mosaic)

num.sim = 10000

num.years = 20

values = do(num.sim) * {
prod(1 + rnorm(num.years, 6, 15)/100)

}
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Simulation results

Now we can answer all kinds of questions:

What is the mean value of our investment after 20 years?

vals = values$result

mean(vals)

## [1] 3.187742

What’s the probability we beat a fixed-income investment (say at

2%)?

sum(vals > 1.02^20)/num.sim

## [1] 0.8083
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Simulation results

What’s the median value?

median(vals)

## [1] 2.627745

(Recall: The median of a probability distribution (say m) is the

point such that Pr(X ≤ m) = 0.5 and Pr(X > m) = 0.5 when X

has the given distribution).

Remember the mean of our simulated values was 3.19...
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Median and skewness

I For symmetric distributions, the expected value (mean) and

the median are the same... look at all of our normal

distribution examples.

I But sometimes, distributions are skewed, i.e., not symmetric.

In those cases the median becomes another helpful summary!
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Probability density function of our wealth at T = 20

We see the estimated distribution is skewed to the right if we use

the simulations to estimate the pdf:
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What’s next?

What’s mising from this picture?

Where did SP500’s 6% returns with an SD of 15% come from?

Up next: Learning parameters from data (statistics!), and

uncertainty in parameters
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