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We replace linear terms with Bayesian additive 
regression trees (BART)



yij = ↵j + �(xij) + [⌧(wij) + �j ] zij + ✏ij

Coloring outside the lines:  
Multilevel Bayesian Causal Forests

We replace linear terms with Bayesian additive 
regression trees (BART)

BART in causal inferece: Hill 
(2011), Green & Kern (2012), … 

!

Parameterizing treatment effect 
heterogeneity with BART is due to 
Hahn, Murray and Carvalho (2017)



yij = ↵j + �(xij) + [⌧(wij) + �j ] zij + ✏ij

Coloring outside the lines:  
Multilevel Bayesian Causal Forests

Allows for complicated functional forms 
(nonlinearity, interactions, etc) without 

pre-specification…

…while carefully regularizing estimates with 
prior distributions (shrinkage toward additive 
structure and discouraging implausibly large 

treatment effects)
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Analyzing data with ML BCF
• Obtain posterior samples for all the parameters, compute treatment 

effect estimates for each unit/school/etc. 

• The challenge: How do we summarize these complicated objects? 

• “Roll up” treatment effect estimates to ATE 

• Subgroup search 

• Counterfactual treatment effect predictions/“partial effects of 
moderators”



Application: A new analysis with NMS

• Same moderators (school mindset norms, achievement, and 
minority composition) + controls 

• Different population (all students) and outcome (math GPA) 

• Same basic process with limited researcher DOF 

• Weakly informative priors on τ(w) (<0.5 GPA points with high 
prior probability) and random effects



95% confidence interval 
from ML Linear Model

95% uncertainty interval 
from ML BCF

Inference for the Average Treatment Effect



Subgroup search
• Obtain posterior mean of treatment effects 

• Use recursive partitioning (CART) on the posterior mean to find 
moderator-determined subgroups with high variation across 
subgroup ATE 

• Statistically kosher! We use the data once (prior -> posterior) 

• Can be formalized as the Bayes estimate under a particular loss 
function
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Counterfactual treatment effect predictions
• How do estimated treatment 

effects change in lower 
achieving/low norm schools if 
norms increase, holding 
constant school minority 
comp & achievement? 

• Not a formal causal mediation 
analysis (roughly, we would 
need “no unmeasured 
moderators correlated with 
norms”)
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  Original	
  	
  0.032	
  (-­‐0.011	
  0.076)	
  
+10%	
  	
  	
  	
  	
  	
  	
  0.050	
  (0.005,	
  0.097)	
  
+Half	
  IQR	
  	
  0.051	
  (0.005,	
  0.099)	
  
+Full	
  IQR	
  	
  0.059	
  (0.009,	
  0.114)	
  

!

1 IQR = 0.6 extra problems 
on worksheet task



Conclusion
• Flexible models + careful regularization + posterior summarization is a 

winning combination 

• Our approach takes the best parts of linear models with lots of 
researcher degrees of freedom and “black box” machine learning 
methods that only afford bankshot regularization and summarization 

• Many “degrees of freedom” in the summarization step, but these 
depend on the data only through the posterior 

• Unlike many ML methods, we can handle multilevel structure and 
prior knowledge with ease




