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National Study of Learning Mindsets
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National Study of Learning Mindsets

• National Study of Learning Mindsets (Yeager et. al., 2017):
Randomized controlled trial of a low-cost mindset intervention

• Probability sample, 65 schools in this analysis (> 11, 000 9th
grade students)

• Specifically designed to assess treatment effect heterogeneity
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National Study of Learning Mindsets

What do we hope to gain with BNP?

• Avoid (explicit) model selection/specification search

• Flexible models of treatment effect heterogeneity

• Appropriate measures of uncertainty

Where does BNP need a little help?

• Summarizing complex posteriors to communicate results
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Our (generic) assumptions

Strong ignorability:

Yi(0), Yi(1) ⊥⊥ Zi | Xi = xi,

Positivity:
0 < Pr(Zi = 1 | Xi = xi) < 1

for all i. Then
P(Y(z) | x) = P(Y | Z = z, x)

,

and the conditional average treatment effect (CATE) is

τ(xi) : = E(Yi(1)− Yi(0) | xi)
= E(Yi | xi, Zi = 1)− E(Yi | xi, Zi = 0).
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Parameterizing Nonparametric Models of Causal Effects

Let’s forget confounding and covariates for a second.

A simple model:

(Yi | Zi = 0) iid∼ N(µ0, σ2)

(Yi | Zi = 1) iid∼ N(µ1, σ2)

where the estimand of interest is τ ≡ µ1 − µ0.

If µj ∼ N(ϕj, δj) independently then τ ∼ N(ϕ1 − ϕ0, δ0 + δ1)

Often we have stronger prior information about τ than µ1 or µ0 – in
particular, we expect it to be small.
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Parameterizing Nonparametric Models of Causal Effects

A more natural parameterization:

(Yi | Zi = 0) iid∼ N(µ, σ2)

(Yi | Zi = 1) iid∼ N(µ+ τ, σ2)

where the estimand of interest is still τ .

Now we can express prior beliefs on τ directly.
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Parameterizing Nonparametric Models of Causal Effects

How does this relate to models for heterogeneous treatment effects?
Consider (mostly) separate models for treatment arms:

yi = fzi(xi) + ϵi ϵi ∼ N(0, σ2)

(Yi | Zi = 0, xi)
iid∼ N(f0(x), σ2)

(Yi | Zi = 1, xi)
iid∼ N(f1(x), σ2)

Independent priors on f0, f1 → prior on τ(x) ≡ f1(x)− f0(x) has larger
variance than prior on f0 or f1

No direct prior control – simple f0, f1 can compose to complex τ .

Every variable in x is a potential effect modifier.
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Parameterizing Nonparametric Models of Causal Effects

What about the “just another covariate” parameterization?

yi = f(xi, zi) + ϵi ϵi ∼ N(0, σ2)

(Yi | Zi = zi, xi)
iid∼ N(f(xi, zi), σ2)

Then the heterogeneous treatment effects given by

τ(x) ≡ f(x, 1)− f(x, 0)

and every variable in x is still a potential effect modifier, and we
have no direct prior control...
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Parameterizing Nonparametric Models of Causal Effects

Set f(xi, zi) = µ(xi) + τ(wi)zi, where w is a subset of x:

yi = µ(xi) + τ(wi)zi + ϵi, ϵi ∼ N(0, σ2)

(Yi | Zi = zi)
iid∼ N(µ(xi) + τ(wi)zi, σ2)

The heterogeneous treatment effects are given by τ(w) directly

In Hahn et. al. (2017) we use independent BART priors on µ and τ

(“Bayesian causal forests”)
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Tweaking priors for causal effects

Several adjustments to the BART prior on τ :

• Higher probability on smaller τ trees (than BART defaults)

• Higher probability on “stumps”, trees that never split (all stumps
= homogeneous effects)

• N+(0, v) Hyperprior on the scale of leaf parameters in τ
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What about observational data?

What changes when adding confounding?

Not much, but we should include an estimated propensity score as a
covariate:

yi = µ(xi, π̂(xi)) + τ(wi)zi + ϵi, ϵi ∼ N(0, σ2)

(Yi | Z = zi)
iid∼ N(µ(xi, π̂(xi)) + τ(wi)zi, σ2)

Mitigates regularization induced confounding (RIC); see Hahn et. al.
(2017) for details.

Lots of independent empirical evidence this is important (cf Dorie et
al (2019), Wendling et al (2019)).
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The National Study of Learning Mindsets
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Analysis of National Study of Learning Mindsets

• A new analaysis of effects on math GPA in the overall population
of students

• Interesting moderators are baseline level of mindset norms,
school achievement, and minority composition

• Many, many other controls
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Multilevel BCF

Mindset study has students nested within schools:

yij = αj + µ(xij) +
[
ϕj + τ(wij)

]
zij + ϵij, ϵij ∼ N(0, σ2)

αj, ϕj have standard random effect priors (normal with half-t
hyperpriors on scale)

w = school achievement, baseline mindset norms, minority
composition
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We fit this model, now what?

How do we present our results? Average treatment effect (ATE),
school ATE, plots of (school) ATE by xj....

Two questions from our collaborators:

• For which groups was the treatment most/least effective?
• What is the impact of posited treatment effect modifiers,
holding other modifiers constant?
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Subgroup finding as a decision problem

The action γ is choosing subgroups, here represented by a recursive
partition (tree)

• Minimize the posterior expected loss

γ̂ = argmin
γ̃∈Γ

Eτ [d(τ, γ̃) + p(γ̃) | Y, x]

where p() is a complexity penalty and d() is squared error
averaged over a distribution for x.

• With γ̂ in hand we can look at the joint posterior distribution of
subgroup ATEs

Relaxing complexity penalties in the loss function→ growing a
deeper tree

(Hahn et al (2017), Sivaganesan et al (2017))
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We fit this model, now what?

How do we present our results? ATE, school ATE, plots of school ATE
by variables....

Two questions we got from our collaborators:

• For which groups was the treatment most/least effective?
• What was the impact of posited treatment effect modifiers,
holding other modifiers constant?

We could generate posterior distributions of individual-level partial
effects manually and try to summarize these, or try to approximate τ

by a proxy with simple partial effects (i.e. an additive function)
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Posterior projections formodel interpretationswith uncertainty

The goal: Examine the “best” (in a user-defined sense) simple
approximation to the “true” τ(x)

Given samples of τ ,

1. Consider a class of simple/interpretable approximations Γ to τ

2. Make inference on

γ = argmin
γ̃∈Γ

d(τ, γ̃) + p(γ̃)

for an appropriate distance function d and complexity penalty
p(γ)

Get draws of γ by solving the optimization for each draw of τ

Also get discrepancy metrics, like pseudo-R2: Cor2[γ(xi), τ(xi)]
(Woody, Carvalho, and Murray (2019) for this approach in predictive models)
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Approximate partial effects of treatment effect modifiers

Here we use:

• An additive approximation γ(x)
• d(τ, γ) =

∑n
i=1(τ(xi)− γ(xi))2

• A smoothness penalty p(γ)

Don’t average draws to get a point estimate! Treat

d(τ, γ̃) + p(γ̃) =
n∑
i=1

(τ(xi)− γ(xi))2 + p(γ̃)

as a loss function, and minimize posterior expected loss:

γ̂ = argmin
γ̃∈Γ

Eτ [d(τ, γ̃) + p(γ̃) | Y, x]
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Thank you!

• P. Richard Hahn, Jared S. Murray, Carlos M. Carvalho: “Bayesian
regression tree models for causal inference: regularization,
confounding, and heterogeneous effects”, 2017; arXiv:1706.09523.

• Spencer Woody, Carlos M. Carvalho, Jared S. Murray: “Model
interpretation through lower-dimensional posterior
summarization”, 2019; arXiv:1905.07103.
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